
Public

FP7-ICT -2009- 4 (247999) COMPLEX

COdesign and power Management in PLatform-

based design space EXploration

Project Duration 2009-12-01 ï 2012-11-30 Type IP

WP no. Deliverable no. Lead participant

WP3 D3.2.2 POLITO

Final report on embedded software and hardware

optimization

Prepared by Massimo Poncino, Haroon Mahmood (PoliTo),

Carlo Brandolese, Gianluca Palermo, William

Fornaciari (PoliMi), Sven Rosinger, Kim

Grüttner (OFFIS)

Issued by POLITO

Document Number/Rev. COMPLEX/ POLITO/R/D3.2.2/1.0

Classification COMPLEX Public

Submission Date 2012-02-29

Due Date 2012-02-29

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

© Copyright 2012 OFFIS e.V., STMicroelectronics srl., STMicroelectronics Beijing

R&D Inc, Thales Communications SA, GMV Aerospace and Defence SA, SNPS Belgium

NV, EDALab srl, Magillem Design Services SAS, Politecnico di Milano, Universidad de

Cantabria, Politecnico di Torino, Interuniversitair Micro-Electronica Centrum vzw, European

Electronic Chips & Systems design Initiative.

This document may be copied freely for use in the public domain. Sections of it may be

copied provided that acknowledgement is given of this original work. No responsibility is

assumed by COMPLEX or its members for any aplication or design, nor for any

infringements of patents or rights of others which may result from the use of this document.

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 2

History of Changes

ED. REV. DATE PAGES REASON FOR CHANGES

Massimo Poncino 1.0 2012-02-29 56 First release of final version.

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 3

Table of Contents

1 Scope of the Document .. 4

2 Embedded SW optimization ... 5
2.1 Compiler optimizations exploration ... 6

2.1.1 Optimization space modelling .. 6
2.1.2 Optimizations clustering .. 7
2.1.3 Flow execution ... 9

2.2 Source to source optimization flow .. 13
2.2.1 Optimization hint engine .. 13

2.2.2 Optimization hint rule definition .. 14
2.2.3 Flow execution of the optimization hint engine ... 16
2.2.4 Transformation effectiveness quantitative estimator ... 16
2.2.5 Flow execution of the transformation effectiveness estimator 17

2.3 Parametric exploration ... 18

2.3.1 Target independent configuration .. 18
2.3.2 Target dependent configuration ... 20

2.4 Tools ... 22
2.4.1 swat-core-cc ... 22

2.4.2 swat-opt .. 23
2.4.3 swat-tge .. 24

3 Custom hardware optimization .. 25
3.1 High level synthesis optimizations ... 25

3.1.1 Technology Selection and Parameter Ranges .. 25
3.1.2 Evaluation of Power Gating Models .. 27

3.1.3 Evaluation of IP-Level Application of Power Management 35
3.2 Memory optimization ... 39

3.2.1 Introduction .. 39

3.2.2 Energy Optimization of scratchpad memories ... 39
3.2.3 Concurrent Aging and Energy Optimization of scratchpad memories 40

4 Application to Use-Cases ... 51

4.1 Use Case 1 .. 51
4.2 Use Case 2 .. 51

4.2.1 DCT - High level synthesis optimizations ... 51
4.3 Use Case 3 .. 54

5 Summary .. 55
6 References .. 56

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 4

1 Scope of the Document

This deliverable presents the results from Task T3.2 - Embedded software optimization

(Participants: PoliMi, IMEC - Start: M7 - End: M24) and Task T3.3 ï Custom hardware

optimization (Participants: CV, OFFIS, PoliTo - Start: M7 - End: M24) up to M27.

The deliverable is the second and last describing the optimization activities for embedded

software and for the hardware, and describes to the application of these optimization

techniques in the COMPLEX flow óin isolationô without emphasis of their interaction. The

latter is the subject of a different set of deliverables (D3.4, òIntermediate and Final Report on

Design Space Exploration D3.4.3, ñFinal Report on Design Space Explorationò for the

hardware optimizations, and D3.5.2 ñFinal report on Run-Time Managementò for the

software techniques).

The document closely follows the structure of its predecessor (D3.2.1). Sections 2 and 3 of

describe the methodologies and the toolchains for the embedded software and custom

hardware optimization (both High Level Synthesis and Memory hierarchy optimizations).

Finally, Section 4 shows how the three selected use cases are covered by the optimization

toolchains.

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 5

2 Embedded SW optimization

Embedded software optimization has been studied in several different ways. Some approaches

are strictly related to the detailed software estimation and optimization methodologies, other

involve also additional portions of the flow, namely the design space exploration engine

MOST. This section describes the advancements in the implementation of the different

optimization flows

1. Compiler optimization exploration. Integrates the SWAT detailed software estimation

toolchain with the MOST design exploration engine to find out the best combination

of optimization options offered by the LLVM code transformation tool.

2. Source-to-source transformation. This flow is completely based on the SWAT toolchain

and has the goal of providing "optimization hints" to the developer, suggesting high-

level, potentially beneficial transformations. This toolchain cannot be integrated with

the MOST exploration engine since the suggested transformations are not applied

automatically but rather require manual coding. Two different approaches have been

followed.

a. Qualitative. The first is a qualitative only ñoptimization hintò engine,

providing indications on the section of code to optimize and on how to

optimize it.

b. Quantitative. The second is an evolution of this first approach, as it estimated

the potential energy reduction associated to a certain transformation. Bein

quantitative, this approach requires significant effort to analyze the effect of

transformations and to model them in quantitative way.

3. Parametric optimizations. This flow integrates the SWAT estimation toolchain with the

MOST exploration engine and operates on source files implementing functions that

depend on compile-time parameters. Typical examples are compiler pragmas (memory

alignment, loop properties, unrolling directives, linker options, etc.) and application-

specific parameters.

4. Application configuration. This flow integrate the SWAT estimation tool chain with the

MOST exploration engine and provides an automated mechanism for the selection of

specific ñfunction implementationsò and ñprocessor operating modesò. The two

approaches cover different application aspects.

a. Target independent. This flow assumes that more than one implementation

(referred to as "function mode") is provided for one or more given functions.

Implementation differ w.r.t. functional and non-functional properties. Different

implementation are expected to be executed on the target platform always

operating in the voltage and frequency conditions.

b. Target dependent. Selected functions are automatically annotated to force the

target to enter specific voltage and frequency operating modes. The best

combination of modes is selected by means of design space exploration trying

to minimize the overall application energy under timing constraints.

Details of each flow are provided in the following.

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 6

2.1 Compiler optimizations exploration

This section provides a summary of the proposed optimization approach and reports the

improvements that have been implemented.

2.1.1 Optimization space modelling

The available set of LLVM transformations/optimization is modeled by the binary vector:

[]NtttT 310= (1)

whose element ti indicates whether the i-th transformation is active or not (for the list of

available transformations see Deliverable D3.2.1). This leads to a very large space to be

explored. The clustering matrix:

ù
ù
ù
ù

ú

ø

é
é
é
é

ê

è

=

nKKK

N

N

rrr

rrr

rrr

,1,0,

,11,10,1

,01,00,0

3

4644

3

3

R

 (2)

Has the goal of grouping transformations. An element 1, =jir indicates that the transformation

with index j belongs to group i, while a value 0, =jir means that the transformation j does not

belong to group i. With clustering, a specific optimization choice is described by the set of

groups that are active, that is by a vector:

[]KgggG 310=

 (3)

having the same semantics as vector T, but with groups instead of single transformations.

Given a certain choice of groups to be activated ï as selected by the exploration flow ïthe

transformations to enable are simply obtained as:

 ()TRGT ³= (4)

The original idea of the flow has been extended according to a two-phase approach. The

second phase consists in the exploration over clusters of transformation, as described above

and in more detail in Deliverable D3.2.1. The first phase, on the other hand, operates within

each cluster. Given a cluster

[] }1|{ ,,1,0, === jijNiiii rtrrrg 3

 (5)

the same flow is used to select the subset of transformation that lead to more efficient code.

Formally, this is equivalent to eliminate those transformations whose effect is negligible on

the specific code. If jt is such a transformation, then we set 0, =jir . After reducing all groups

according to this procedure, cluster-level optimization is performed.

The setup of the MOST-based optimization flow is depicted in Figure 1. Inputs of the flow

are the source files, the set of compiler options and a model of the target architecture.

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 7

x.c

t = Estimated time
e = Estimated energy
s = Estimated size

MOST

Design Space:
optimizationslist

Optimization
OptionsOptimization

Front - End

Back - End

CPU
model

x.opt.c

x.c

t = Estimated time
e = Estimated energy
s = Estimated size

MOST

Design Space:
optimizationslist

Optimization
OptionsOptimization

Front - End

Back - End

CPU
model

x.opt.c

Figure 1: General MOST-based optimization flow

The output can have different forms, namely:

1. A host-executable binary file

2. A target-executable binary file

3. A list of compilation options

4. A rewriting of the C source code.

It must be noted that, in the last case, the SWAT flow uses the LLVM experimental C

language back-end, which generates C code that is hardly readable, as it is the effect of

translation of assembly code back to very simple C statements.

2.1.2 Optimizations clustering
This section summarizes the clusters that have been constructed to perform the two-phase

transformation selection exploration.

Control Flow
- abcd Remove redundant conditional branches
- break - crit - edges Break critical edges in CFG
- block - placement Profile Guided Basic Block Placement
- insert - edge - profiling Insert instrumentation for edge profiling
- insert - optimal - edge - profiling Insert optimal instrumentation for profiling
- jump - threading Thread control through conditional blocks
- mergereturn Unify function exit nodes
- lowerswitch Lower SwitchInst's to branches
- sink Code Sinking
- simplifycfg Simplify the CFG

Functions
- always - inline Inliner for always_inline functions
- argpromotion Promote 'by reference' arguments to scalars
- codegenprepare Prepare a function for code generation
- deadargelim Dead Argument Elimination

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 8

- functionattrs Deduce function attributes
- inline Function Integration/Inlining
- ipconstprop Interprocedural constant propagation
- ipsccp Interprocedural Sparse Conditional Constant Propagation
- mergefunc Merge Functions
- partial - inliner Partial Inliner
- partial - specialization Partial Specialization
- sretpromotion Promote sret arguments
- tailcallelim Tail Call Elimination
- tailduplicate Tail Duplication

Constants
- constmerge Merge Duplicate Global Constants
- constprop Simple constant propagation
- ipconstprop Interprocedural constant propagation
- ipsccp Interprocedural Sparse Conditional Constant Propagation
- sccp Sparse Conditional Constant Propagation

Variables & Expressions
- argpromotion Promote 'by reference' arguments to scalars
- globaldce Dead Global Elimination
- globalopt Global Variable Optimizer
- gvn Global Value Numbering
- mem2reg Promote Memory to Register
- reg2mem Demote all values to stack slots
- scalarrepl Scalar Replacement of Aggregates
- reassociate Reassociate expressions
- split - geps Split complex GEPs into simple GEPs

Basic Blocks
- adce Aggressive Dead Code Elimination
- dce Dead Code Elimination
- die Dead Instruction Elimination
- dse Dead Store Elimination
- instcombine Combine redundant instructions
- sink Code Sinking

Loops
- indvars Canonicalize Induction Variables
- lcssa Loop-Closed SSA Form Pass
- licm Loop Invariant Code Motion
- loop - deletion Dead Loop Deletion Pass
- loop - extract Extract loops into new functions
- loop - extract - single Extract at most one loop into a new function
- loop - index - split Index Split Loops
- loop - reduce Loop Strength Reduction
- loop - rotate Rotate Loops
- loop - unroll Unroll loops
- loop - unswitch Unswitch loops
- loop - simplify Canonicalize natural loops

Lowering
- lowerallocs Lower allocations from instructions to calls
- loweratomic Lower atomic intrinsics
- lowerinvoke Lower invoke and unwind, for unwindless code generators
- lowersetjmp Lower Set Jump

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 9

- lowerswitch Lower SwitchInst's to branches
- memcpyopt Optimize use of memcpy and friend
- prune - eh Remove unused exception handling info
- simplify - libcalls Simplify well-known library calls
- simplify - libcalls - halfpowr Simplify half_powr library calls

Finally, the transformations in the following group are always active, since they mostly deal

with the manipulation of the internal representation and do not really have an effect on the

quality of the code.

Always active
- deadtypeelim Dead Type Elimination
- internalize Internalize Global Symbols
- strip Strip all symbols from a module
- strip - dead - prototypes Remove unused function declarations
- strip - debug - declare Strip all llvm.dbg.declare intrinsics
- ssi Static Single Information Construction
- ssi - everything Static Single Information Construction

2.1.3 Flow execution

Execution of the optimization flow is quite straightforward. In the following we suppose that

the transformations are clustered as described in the previous section.

Since the flow is integrated with MOST, which acts a main tool, two files are necessary:

1. A wrapper script to invoke the actual estimator.

2. An XML file describing the exploration space and the optimization goals.

The script, in particular, wraps the call to the C-to-C SWAT optimization tool based on the

LLVM optimizer opt and the swat - core - ba fl ow to evaluate execution time and

energy consumption of the code resulting from the application of selected transformations.

Here is an example of the script that has been developed to this purpose.

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 10

#__MOST_GENERIC_WRAPPER__# INPUT_TEMPLATE_FILE INPUT_FILE

#__MOST_GENERIC_WRAPPER__# METRIC_NAME OUTPUT_FILE TYPE ADDITIONAL INFO

#__MOST_GENERIC_WRAPPER__output_file__#

 execution_cycles

 log/reisc_sim.lo

 regexp

 Executed \ s*(\ S+) \ s*cycles

#__MOST_GENERIC_WRAPPER__output_file__#

 instructions

 log/reisc_sim.l og

 regexp

 cycles, \ s*(\ S+) \ s*instructions

#__MOST_GENERIC_WRAPPER__output_file__#

 code_size

 log/stat.log

 template

 Size:

#!/bin/sh

TARGET_FILE_DIR="/home/complex/UC1/apps/gsm/"

REISC_CONFIG_FILE="/home/complex/UC1/reisc/simple.cfg"

set - e

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 11

touch phase1.txt phase2.txt phase3.txt excluded.txt

echo " - indvars - loop - unroll" >> @__MOST_GENERIC_WRAPPER__loop_unroll__@.txt

echo " - inline" >> @__MOST_GENERIC_WRAPPER__inline__@.txt

echo " - licm - loop - unswitch" >>@__MOST_GENERIC_WRAPPER__licm__@.txt

echo " - sccp" >> @__MOST_GENERIC_WRAPPER__sccp__@.txt

echo " - mem2reg" >> @__MOST_GENERIC_WRAPPER__mem2reg__@.txt

echo " - preverify - domtree - verify - lowersetjmp" > opt.cfg

cat phase1.txt phase2.txt phase3.txt >> opt.cfg

echo " - preverify - domtree - verify" >> op t.cfg

rm phase*.txt

mkdir - p log bin opt opt/tmp

swat - opt - config opt.swatcfg - swat - debug > log/swat_opt.log 2>&1

reisc - gcc - O0 - mint32 opt/*.c - o bin/a.out > log/reisc_gcc.log 2>&1

reisc - run - a " -- config - file=$REISC_CONFIG_FILE" bin/a.out >

log/reisc_s im.log 2>&1

stat bin/a.out > log/stat.log

exit 0

As far as the exploration space description, it is constituted by an XML file listing the

available parameters to explore and the optimization goal.

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 12

#<?xml version="1.0" encoding="UTF - 8"?>

<design_space xml ns="http://www.multicube.eu/" version="1.3">

<simulator>

 <simulator_executable path="/usr/bin/perl /home/ most /wrapper.pl

 ï- execution_config=/home/most/complex/UC1/run.sh.in -- timeout=1800" />

</simulator>

<parameters>

 <parameter name="loop_unroll" type="string">

 <item value="excluded"/>

 <item value="phase1"/>

 <item value="phase2"/>

 <item value="phase3"/>

 </parameter>

<parameter name="inline" type="string">

 <item value="excluded"/>

 <item val ue="phase1"/>

 <item value="phase2"/>

 <item value="phase3"/>

</parameter>

 ...

</parameters>

<system_metrics>

 <system_metric name="instructions" type="float" unit="inst"

 desired="small" />

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 13

 <system_metric name="execution_cyc les" type="float" unit="cycle"

 desired="small" />

 <system_metric name="code_size" type="float" unit="Byte"

 desired="small" />

</system_metrics>

</design_space>

As mentioned before, the SWAT estimation flow can seamlessly be replaced by the target ISS

to perform a more accurate energy evaluation. This second option, though, suffers the

drawback that instruction set simulation proved to be more than 400 time slower than

estimation. This, considering that the exploration space is rather large, strongly encourages

the use of the SWAT estimation toolchain. The optimization and estimation commands run by

the script are the following:

 $> swat - core - cc ïconfig opt.swatcfg ïswat - debug

 $> swat - core - ba ïconfig ba.swatcfg ïswat - debug

The tool swat - core - cc performs actual transformations using the LLVM optimizer. The

set of active transformation is passed to LLVM through specific configuration options in the

opt.swatcfg file. This is thus the input for the transformation and estimation tools and the

output of the MOST engine during exploration. At each step of the exploration process, in

fact, MOST generates a new configuration file.

For the format of the configuration files and a description of the command line options See

Section 2.4.

2.2 Source to source optimization flow

This section describes the implementation of the source-to-source optimization hint engine

based on the formal formulation provided in Deliverable D3.2.1. Since the optimization hint

engine swat - opt does not perform any source code transformation ï which is left as a

manual task to be performed by the developer ï it is not possible to ñcloseò the optimization

loop by exploiting the exploration tool MOST.

The second part of the section describes the prototypical implementation of the quantitative

transformation evaluation engine swat - tge . This tool provides a quantitative estimation of

the potential energy saving that might be obtained by applying specific high-level

transformations.

2.2.1 Optimization hint engine

After running the hint engine, the developer is provided with a set of suggestions on where

and how to transform the source code.

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 14

Figure 2 shows a simplified view of the, where some pre-processing activities have been

omitted and indicated as a whole with ñFront-Endò box. It should be noted that the closed

loop actually needs human intervention, as the suggested code transformations are not applied

automatically.

x.c

Optimization
Hints

Optimization

Engine

Front - End

Back - End

CPU
model

t = Estimated time
e = Estimated energy
s = Estimated size

Satisfied ?

Manual
Code

Transformation

x.opt.c

x.opt.c

yes

no

apply
suggested
transformations

transformation
rules

x.c

Optimization
Hints

Optimization

Engine

Front - End

Back - End

CPU
model

t = Estimated time
e = Estimated energy
s = Estimated size

Satisfied ?

Manual
Code

Transformation

x.opt.c

x.opt.c

yes

no

apply
suggested
transformations

transformation
rules

Figure 2: General SWAT-based source-to-source optimization flow

2.2.2 Optimization hint rule definition

The grammar used to build the rules is rather general and is described in the following

rulelist rule rulelist

 | rule

rule ruleid ó:ô condition

ruleid constant

condition term ó|ô condition

 | term

term elem ó&ô term

 | term

elem comp

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 15

 | ó~ô comp

comp ó%ô ruleid

 | ó(ô condition ó)ô

 | identifier relop constant

identifier ó$ô metricid

 | ó$ô metricid ó[ó constant ó]ô

Where constant is a terminal symbol indicating a numeric constant, relop stands for a

relational operator and metricid is a terminal symbol whose string value identifies a specific

metric, according to the following table, grouped according to the scope they refer to

(function, basic-block, or whole application). The second column indicates whether the metric

is a scalar or a vector. In the latter case, specifies the meaning of the index.

Function metrics

Identifier Argument Description

fnsize Function size

fnbbsize Function BB size

fnsizeavg Average function size

fnbbsizeavg Average function BB size

fncalls Functions called

fncallswgh Weighted functions called

fncallpoints Function call points

fninsnstat Index of the instruction Function instruction statistics

fnexec Function execution count

fntime Total function execution time

fntimeavg Average function execution time

fndepth Average function depth

fncallpointf Function call points frequency

fnregpress Function register pressure

fnclassstat Index of the class Function instruction class statistics

fnmempress Function memory pressure

fnstackpress Function stack pressure

Basic block metrics

Identifier Argument Description

bbsize Basic block size

bbsizeavg Average basic block size

bbinsnstat Index of the instruction Basic block instruction statistics

bbexec Basic block execution count

bbregpress Basic block register pressure

bbclassstat Index of the class Basic block instruction class statistics

Application metrics

Identifier Argument Description

aaclassstat Index of the class Instruction class statistics

aastackmax Maximum stack size

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 16

aainsnstat Index of the instruction SInstruction statistics

aabbexec Total basic block execution time

aaregpress Register pressure

aamempress Memory pressure

aastackpressave Average stack pressure

2.2.3 Flow execution of the optimization hint engine

It is worth noting that swat - opt the should not be applied to all the source code, but rather

to selected portions, called ñscopesò (see Deliverable D3.2.1) that have been identified as the

most critical part of the application.

The list of scopes can be obtained using the analysis flow constituted by swat-core-ba and

swat-analyze. In particular, after performing the basic modeling and estimation tasks collected

in swat-core-ba with:

 $> swat - core - ba ïconfig myconfig.swatcf ïswat - debug

it is necessary to run swat-analyze with the selection options activated, namely:

 $> swat - analyze - bb- select ïthreshold <percent>

 ïcluster *.bbmodel

to select critical basic-blocks (loops inclusive), and:

 $> swat - analyze - fn - select ïthr eshold <percent> *.bbmodel

to select critical functions. Furthermore, since the optimization engine needs to know which

groups of basic blocks constitute a loop, the following command should be executed for each

critical function

 $> swat - analyze ïbb- cfg ïloops f1.bbmodel f2.bbmodel ...

Finally the optimization engine can be run with the command

 $> swat - opt ïconfig opt .swatcfg ïswat - debug

For a detailed description of the command line interface and of the configuration options of

the tools, see Section 2.3.1. and Sections 4.4, 4.5 and 4.6 of Deliverable D2.2.2.

2.2.4 Transformation effectiveness quantitative estimator

This tool provides an estimate of the effectiveness of specific high-level transformations. The

key concept behind this approach is the possibility to estimate how the basic-block models of

the applications will be affected by specific transformation. The simplest and most accurate

approach would be to actually transform the source code, then perform estimations. This is

depicted by Figure 3.

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 17

Figure 3: Exact transformation effectiveness estimation approach

The tool, thus, does not perform exact and semantically consistent transformation of the code

(as a source-to-source transformation engine would do) but rather ñupdatesò the underlying

basic block models. This is pictorially represented by Figure 4.

Figure 4: SWAT Transformation effectiveness estimation approach

This approach requires a significant analysis and modeling effort to characterize specific

transformations in terms of resulting basic-block models. From a technical point of view, it is

not possible to express the transformation of the basic-block models strictly in mathematical

form. For this reason we have decided to account for the effect of each transformation by

means of a specific algorithm generating the new basic-block model. Each algorithm is the

compiled in a shared dynamic library loaded at runtime by the core tool.

2.2.5 Flow execution of the transformation effectiveness estimator

The tool implementing this idea is currently in a very preliminary phase of development, as it

was not originally foreseen in the project. We nevertheless decided to explore this idea mainly

to support the optimization hint engine, rather than replacing it completely.

The tool is run with the following command line:

 $> swat - tge ïconfig tge.swatcfg ïtform <name> ïswat - debug

The configuration file, at present, does not introduce any additional option. Transformations

are explicitly specified on the command line. The name of the transformation is used to select

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 18

the specific model transformation dynamic library to be loaded. A complete description of the

interface is not provided here, since the tool not yet stable enough.

2.3 Parametric exploration

This flow has the goal of finding the combination of the "parameters" of the applications that

maximizes a predefined optimization goal. The kind of parameters that can be explored here

are all supposed to be implemented as macro definitions influencing:

1. The behavior of the compiler. These macros (usually pragmas) are used to modify the

behavior of the compiler in the optimization, code generation and linking phases.

2. The behavior of the application. These macros directly influence the behavior of the

application code, by specifying, for example, tolerances, number of iterations,

timeouts, polling frequencies and so on.

We will refer to the former case as ñtarget independentò exploration, while as ñtarget

dependentò exploration the latter.

The optimization flow, shown in Figure 5, combines the MOST exploration engine and the

SWAT estimation toolchain (or the actual instruction-set simulator of the target platform).

x.c

t = Estimated time
e = Estimated energy
s = Estimated size

MOST

Design Space:
optimizationslist

Front - End

Back - End

CPU
model

macros.h

macros.hx.c

t = Estimated time
e = Estimated energy
s = Estimated size

MOST

Design Space:
optimizationslist

Front - End

Back - End

CPU
model

macros.h

macros.h

Figure 5: General setup of the optimization flow for parametric exploration.

The flow has been implemented and tested on small examples. Since the implementation of

the flow basically consists in building ad-hoc wrappers and XML parameters descriptions for

interfacing MOST and the SWAT estimation flow, no additional details needs to be provided

here. The form of the XML file and of the wrapper script is similar to that discussed in

Section 2.1.3.

2.3.1 Target independent configuration

For this kind of optimization, we suppose that a given function foo() of the application has

been implemented in different ways, which we refer to as functional modes. Each functional

mode is then subject to conditional compilation under the guard of macro FOO_MODE_<N>,

where <N> is a suffix that unambiguously identifies one of the specific implementations. An

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 19

example of implementation template of a function with three different modes is provided in

Figure 6.

#if defined (FOO_MODE_1)

 int foo(int x) {

 // Implementation 1

 }

#elif defined (FOO_MODE_2)

 int foo(int x) {

 // Implementation 2

 }

#elif defined (FOO_MODE_3)

 int foo(int x) {

 // Implementation 3

 }

#else

#error Mode not defined.

#endif

Figure 6: Template implementation of a function with three functional modes.

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 20

Typical examples of different ñfunctional modesò of a function are related to the different

accuracies of a computation, a floating-point versus a fixed-point implementation of an

algorithm and different trade-offs between local processing and transmission frequency for

sensing functions on a wireless sensor network node.

2.3.2 Target dependent conf iguration

This second option of parametric exploration has the goal of determining the best combination

of the voltage and frequency operating modes of the target processor. Compared to traditional

approaches, where entire threads, processes or process batches are assigned an operating

mode, the exploration proposed here operates at a much finer-grained level.

Considering a generic application as structured as a set of C functions, we first identify the

most critical ones, using the same analysis steps outlined for the optimization hints flow.

These functions needs then modified manually, but in a very trivial way: it is in fact sufficient

to add two macros, one at the beginning and one at the end of the function. Note that if the

function has more than one exit point, the exit macro must be added before each of them.

Figure 7 shows a template of a function instrumented with the macros necessary to enable this

form of parametric exploration and automatic application of the configuration selected by the

exploration engine.

int foo(int x)

{

 /* Declarations */

 VFMODE_ENTER_FOO

 /* Original function body */

 /* At each exit point */

 VFMODE_EXIT_FOO

 return some_var;

}

Figure 7: Modification of a function to support target dependent modes exploration.

In the specific case of the ReISC processor, the core provides three operating modes, namely

normal, snooze and sleep. The exploration engine, supported by the SWAT analysis tools

swat-core-tr and swat-analyze, will select per each function the best suited operating mode of

the target processor. This is done by minimizing the estimated energy consumption under

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 21

execution time constraints, either in the form of deadlines for each function or in the form of

an overall timing constraint.

Again, the structure of the flow is based on the MOST exploration engine and does not

significantly differ from the arrangements discussed so far. The only difference lays in the

core tools of the SWAT framework that are used to perform analysis and estimation.

In particular, the following steps are necessary. First of all, the code of the functions needs to

be modified as described in Figure 7. Then, a static estimation pass must be performed to

derive the execution time and the energy consumption of each basic block of the application.

This is done by means of the swat-core-ba flow. Executing the application with different

processor modes assigned to different functions implies suitably updating the basic-block

models with different costs based on the specific mode the function is assigned.

Since the operating mode of the processor changes over time, depending on the function being

executed and its associated mode, a full trace of the basic-block executed must be generated.

This is done using the swat-core-tr tool with a specific configuration that includes tracing of

function entry and exit points. This information will be used during analysis to determine

where, in the execution trace, the operating mode is changed. The command to do this is:

 $> swat - core - tr ïconfig trbbce.swatcfg ïswat - debug

Where the configuration file specifies the required instrumentation rules and support library,

namely:

[trace - bbce]

rules = bbce.rules

libray = libswat - tracing.a

binary = executable

execute = true

mode = file

The SWAT tracing core flow will dump the execution trace on a file with extension .t804 (see

Deliverable D2.2.2 for a description of the format of the trace file) listing all the executed

basic blocks and the function entry and exit points. This two passes (static estimation and

tracing) need to be performed only once, before entering the exploration loop managed by

MOST.

The dynamic, mode-dependent, estimation is then performed using swat-trp, the SWAT trace

post-processor. This tool, for the specific trace analysis, requires as input a file specifying one

ñallocationò of functions to processor modes. The form of the file is very simple, as it lists all

functions and related operating modes. For a description of the way operating modes can be

assigned to functions, see Section 4.3.9 of Deliverable D2.2.2. This file is the input for the

trace analysis and is the output of MOST. At each step the file describes a different allocation

of functions to modes.

Furthermore the tool needs a specific entry in the configuration file indicating the energy and

timing characterization of the processor modes. This is specified as:

[taget]

cpu - modes = resic.modes

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 22

At this point the analysis tool can be run:

 $> swat - trp ïconfig alloc.swatcfg ïfn - allocation

 ïallocation - file <prj>.alloc

 ïtrace <prj>.t804 ïswat - debug

The output generated are the estimated execution time and energy consumption of the

application configured as described in the allocation file. These figures are used by MOST to

select different allocations until the best one is found.

2.4 Tools

2.4.1 swat -core -cc

This tool implements core of the C-to-C optimization engine based on the LLVM optimizer.

Synopsys

swat - core - cc <options>

Options

- help

Prints a short description of the tool options.

- version

Prints the tool version.

- swat - debug

Produces a verbose debugging output of the execution.

- config

Specifies the configuration filename.

- output

Specifies the output filename, listing the rules that have triggered.

Configuration file specific options

The configuration file format follows the standard defined for all configuration files used by

the SWAT toolchain as described in Section 4.5.1 of Deliverable D2.2.2. For the specific tool

options the configuration file introduces the additional section [optimization] described

below, and uses the information in the configuration options llvm - ccflags , llvm -

optflags and llvm - optfile found in the standard [compilers] section.

The new section simply allows specifying the output directory where to save the optimized

version of the application. This new version is the input for the estimation flow.

Output - dir = < path >

The output directory.

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 23

2.4.2 swat-opt

This tool implements rule-base optimization hint engine.

Synopsys

swat - opt <options>

Options

- help

Prints a short description of the tool options.

- version

Prints the tool version.

- swat - debug

Produces a verbose debugging output of the execution.

- config

Specifies the configuration filename.

- output

Specifies the output filename, listing the rules that have triggered.

Configuration file specific options

The configuration file format follows the standard defined for all configuration files used by

the SWAT toolchain as described in Section 4.5.1 of Deliverable D2.2.2. For the specific tool

options the configuration file uses the additional section [srcopt] described below

r ules = <string>

The rule file. The file has the . opt rules suffix and collects the rules, one per line,

structured according to the grammar exposed above.

fn - selection = < fnid > [<fnid>...]

Selected functions to apply the rules on. The argument is a list of function identifiers,

as generated by swat - uniqid .

bb- selection = < bbid > [<bbid>...]

Selected basic-blocks to apply the rules on. The argument is a list of basic-block

identifiers, as generated by swat - uniqid .

lp - selection = (<bbid > [<bbid>..]) [(<bbid> [< bbid>...]) ...]

Selected loops to apply the rules on. The argument is a list of loops enclose in parentheses,

each loop being in turn a list of basic-block identifiers, as generated by swat - uniqid . The

list of loops can be obtained using swat - analyze with the options ïbb- cfg ïloops , as

describe in Section 4.3.1 of Deliverable D2.2.2.

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 24

2.4.3 swat -tge

This tool implements the quantitative transformation effectiveness estimator.

Synopsys

swat - tge <options>

Options

- help

Prints a short description of the tool options.

- version

Prints the tool version.

- swat - debug

Produces a verbose debugging output of the execution.

- config

Specifies the configuration filename.

- tform <name>

Specifies the transformation to be analysed. The algorithmic transformation model is

implemented in the library tge_<name>.so .

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 25

3 Custom hardware optimization

3.1 High level synthesis optimizations

Modeling the dominant effects of Register Transfer (RT)-level components under power

gating to get fast and accurate estimates in order to explore the design space of the HLS is one

of the main contributions in this work. Figure 8 gives a simplified overview on the modeling,

estimation-, and optimization flow that will be further described in this section. A further

description of the overall flow can be found in Deliverable D.3.2.1.

Its main purpose is to get accurate estimates for four main variables: leakage currents in the

static on and off state, energy overheads due to the state transition and the break-even time.

These values are obtained for each individual RTL component within the design and are then

used beside the precise parameter values and activity patterns to get an estimation for its

overall energy consumption.

Figure 8: Visualisation of proposed power-gating modelling, estimation and optimisation flow

The experimental assessment of the developed power gating model accuracy needs a fixed

and well defined environment. For this reason, at first a technology selection is done for

which the evaluation is done and all model parameters are constrained to a set of discrete

values or a continuous range. The following evaluation then distinguishes between the pure

model evaluation and a presentation of the power management adoption at system level.

3.1.1 Technology Selection and Parameter Ranges

To validate the correctness of the modeling approaches and to prove its universality, a

selection of technologies and parameters has been made. Beside different technology node

sizes, it is important to cover different process corners. Additionally, MTCMOS technologies

should be considered in order to cover sleep transistor implementations in both standard- and

high-threshold design.

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 26

Figure 9: Semiconductor technology selection

Figure 9 lists three different technologies for which the characterization was done. The

Nangate free 45nm open source digital cell library technology is a general purpose (GP)

technology based on predictive technology modelcards of the NIMO Group, Arizona State

University. It is freely available and is widely used in the scientific context. It offers three

even process corners (slow-slow, typical-typical, and fast-fast) that are all evaluated

separately. Even means that both PMOS and NMOS devices are equally affected by

variations of fabrication parameters. Further, it is a MTCMOS technology and thus it includes

both, standard- and high-VTH transistors. The industrial technologies are also MTCMOS

technologies but their process corner is restricted to the typical case in this evaluation.

Additionally, and in contrast to the Nangate library technology, they are both LP specialized

technologies. These LP techniques inherently have lower leakage currents and the resulting

power gating break-even time is in another order of magnitude.

Figure 10: Parameter ranges

Furthermore, a set of different power gating implementation types (referred to as power

gating scheme (PGS)) has been selected. It covers PMOS- as well as NMOS-based sleep

devices, double-cutoff as well as super-cutoff techniques.

Figure 10 lists all parameters of the characterization process and its parameter ranges. The

supply voltage is constrained by the technology whereas the surrounding temperature is

constrained by reasonable values. The gate voltage of the sleep devices that is used in

SCCMOS techniques to enforce a cutoff is specified as an offset to the supply or ground

voltage. It is in the range 0V to 0.1V and thus the sleep signal is in the range of [VDD;

VDD+0.1V] for PMOS-based PGSs and [GND;GND-0.1V] for NMOS-based PGSs. The

sleep transistor width is constrained to a maximum of 10% of the gated component size. The

characterization is also constrained to functional RTL units that are available and supported

by OFFISôs PowerOpt . Their bitwidths ranges from 4 to 32 bits in 4 bit steps.

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 27

3.1.2 Evaluation of Power G ating Models

During model generation, a lot of methods have been used to compact and ease the resulting

models. This includes compressions of lookup tables, exhaustive interpolations in multiple

dimensions, parameter separation, (non)-linear regression techniques, and simplifications to

speed up the model generation. For this reason, the evaluation has to show the quality and the

performance improvements compared to reference estimates. Since silicon measurements are

not available, the reference estimates are obtained by Spice-based analog circuit simulation

measurements. This is an established approach in the scientific as well as industrial area.

The entire characterization is done via Synopsys HSPICE version A-2008.03-SP1 and is

executed on a general purpose Intel Core2Duo machine at 3Ghz. It lasts about one day per

semiconductor technology whereas transient simulations of the state transition energy and

wakeup models make up 98% of the time. Of this, more than 50% is attributable to large

multiplier components. This illustrates the limits of circuit simulations and underlines the

hardness of predicting the application of power gating for huge components.

For presenting the absolute and relative accuracy of the models, a Monte-Carlo evaluation has

been applied covering all parameters in the aforementioned ranges and three error measures

have been computed: the maximum relative error for over- and underestimation (XRE), the

mean absolute relative error (MARE), and the relative standard deviation. In the following,

the evaluation results of the models are presented.

3.1.2.1 Evaluation of Sleep Transistor Leakage Models

In the remaining leakage current model the supply voltage range is sampled with a rate of

0.1V, the temperature with 20°C, and the gate voltage with a rate of 0.1V, resulting in a total

of 5*6*2 = 60 sampling points for each PGS and technology. Furthermore, the

characterization has been done for an isolated PGS circuitry with a channel width of 1µm.

Figure 11 shows the model errors. As it can be seen, the remaining gate- and subthreshold-

leakage currents can be predicted with an average MARE below 1% and a maximum error of

6.5%. On top of this error, the model simplification of assuming the voltage drop across the

sleep transistor to be equivalent to the supply voltage will induce an additional error in terms

of an overestimation of up to 15%.

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 28

Figure 11: Errors of the gate- and subthreshold leakage model for locking sleep transistors

Conducting sleep transistors are again modeled at a supply voltage sampling rate of 0.1V,

whereas the gate voltage disappears as a parameter. Since pure gate-leakage currents do only

slightly depend on the temperature, a wider sampling step of 50°C can be used for this model,

leading to a total of 5*3 = 15 sampling points. Nevertheless, the temperature remains a

parameter during modeling as it may gain importance in future semiconductor technologies

because of increasing pn-junction leakage currents being more dependent on the temperature.

Figure 12 presents the model evaluation results of the gate-leakage model for conducting

sleep devices. The MARE is about 4% for the Nangate free 45nm open source digital cell

library and 1% for the two industrial technologies. In all cases, the model tends to

overestimate the gate-leakage currents because of the quadratic impact of VGS and VGD

while the model linearly interpolates between two adjacent sampling points. Increasing the

supply voltage sampling rate would reduce this overestimation but also enlarge the model.

Additionally, the maximum error is only 18% for the Nangate and even below 4% for the

industrial technologies.

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 29

Figure 12: Errors of the gate-leakage model for conducting sleep devices

3.1.2.2 Evaluation of Voltage Drop Models

Figure 13 presents the maximum, mean, and standard deviation errors of the voltage drop

model for the conducting state. The parameters temperature and supply voltage are sampled

with a step width of 20°C and 0.05V. As presented in the charts, the occurring voltage drop

can be predicted with an average error of 1-5% with maximum overestimates of 25%.

Secondly, the errors of HVT- and double-gating schemes are larger than those of SVT- and

single-gating schemes because these schemes have higher on resistances and increase the

voltage drop dynamic that needs to be interpolated by the model. Underestimates that would

play down the presence of sleep devices are limited to 5% maximum.

The voltage drop model for the locking state is evaluated as presented in Figure 14. For the

parameters supply voltage, temperature, gate-voltage, and sleep transistor size the model

consists of a 5*2*3*6 = 180-point measuring field. With a mean absolute relative error below

1.5% and a relative standard deviation of 2.1% in maximum across all technologies, the

accuracy of the model is very high. However, this accuracy is also necessary because the

estimates serve as input to the state transition energy model and highly impact its prediction.

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 30

Figure 13: Errors of the voltage drop model for conducting sleep devices

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 31

Figure 14: Errors of the voltage drop model for locking sleep devices

3.1.2.3 Evaluation of State Transition Energy Models

The most effort for model evaluation has been spent for the state transition energy model

because some large multiplier components are not simulatable in high bitwidths or in

combination with some PGSs. In these cases, Synopsys HSPICE fails in simulating the

circuits due to a high memory demand and failing convergence analyses. To provide a

meaningful analysis of the model, a Monte-Carlo based evaluation performs a total of 1000

randomly chosen transient simulation runs, lasting about two weeks of computation time. The

presented errors base on about 93% of the simulation runs that have been finished

successfully and include all model errors induced by the model representation and required

interpolation. Especially, the bitwidth-scaling and PGS selection is reflected in the evaluation.

Peak errors have been observed at peak voltage drop errors because of their super linear

dependency.

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 32

Figure 15 summarizes the evaluation results per technology and RTL-component. Mean

absolute relative errors below 10% and mostly even below 5% have been analyzed for the

dominant part of components. Nevertheless, the quality varies. For example the incrementer

component inc_fast in the Nangate technology is conspicuous with its higher peak errors and

standard deviations. Secondly, the model tends to underestimate the state transition energy for

the two multiplier components in different technologies. This suggests the conjecture that the

matrix structure causes super linearly increasing wake-up energies. Nonetheless, the

maximum errors are reasonable below 25% and no further modeling effort has been spent for

these components.

As the temperature is set to the upper bound during characterization, the models do only

predict upper bound estimates. The interpolation table size of the model is 5*2*5 = 50 points

for the model parameters supply voltage, voltage drop, and sleep transistor size.

For the purpose of high-level tradeoffs for which the models should be used, the accuracy is

perfectly adequate and the speed improvement is the dominant model feature. Considering

that a single analog circuit simulation may take up to several hours, the pre-characterized

models can provide thousands of estimates per second.

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 33

Figure 15: Error of state transition energy model

3.1.2.4 Evaluation of State Trans ition Delay Models

Figure 16 presents the wake-up time model evaluation. As it can be seen, the mean average

errors are mainly below 10% but peak errors vary a lot and range up to 26%. Especially the

wake-up delay prediction for the small-type components performs better compared to the fast-

type components throughout all technologies. The interpolation table size of the model is as

small as in the ERT SW model because it bases on the same characterization runs.

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 34

Figure 16: Errors of state-transition delay model

3.1.2.5 Evaluation of Process Variation on Power Gating

The Nangate semiconductor technology offers circuit level device models of three process

corners. These corners represent the extremes of parameter variations within which a circuit

must operate correctly. Thus, the corners cover the overall spectrum from slowest to fastest

possible devices. In this section, the impact of process variation on power gating is evaluated

exemplarily for a single RTL component.

Figure 17 presents model estimates for power gating relevant parameters that are normalized

to the typical operating case. As it can be seen, the voltage drop across the sleep transistor as

well as the state transition energies do only slightly change. This is completely different for

the leakage currents and timing behavior. As expected, power gated components that are

fabricated at the fast process corner wake up faster but on the other hand they cause a lot more

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 35

leakage currents. In relative terms, the active current of the fast process corner is 2.6 times as

high as of the typical corner but, while being power gated, the remaining leakage current in

the sleep state is even 5.3 times as high. But in absolute terms, the amount of reduced leakage

is much higher for the fast corner. Together with the almost constant state change energy,

power gating becomes even more advantageous for designs fabricated at the fast and less

advantageous for the slow process corner.

A break-even time analysis for the Nangate 45nm technology at fast process corner results in

tbe times less than half of the typical-case break-even time.

Figure 17: Normalized model estimates for different process corners to analyze the process variation

impact on power gating

3.1.3 Evaluation of IP -Level Application of Power Management

Every RTL component within a datapath contributes a small fraction to the active and sleep

currents of an overall design and has its individual wake-up energy and time. Further, at RT-

level, each component has its own break-even time. At system-level, all of these parameters

merge to one overall effectivity-metric of power gating and result in one global break-even

time that has to be exceeded if all components are cut off simultaneously. This Section will

evaluate this system-level view of power management in relative comparisons and absolute

numbers against the background of overall possible savings, impact of parameters, and

overhead costs of area and power.

Figure 18 lists design examples and characteristic parameters such as their functional unit

datapath composition after synthesis and cycle count within the schedule. To all of the

designs power gating has been applied with HVT NMOS sleep devices that are most

commonly in todayôs practice. The fourth and fifth column in the table show absolute active

and sleep current numbers of the designs at a fixed supply voltage of 1.0V, an ambient

temperature of 27°C, and on the base of the Nangate 45nm technology at typical process

corner. The sleep and active currents are restricted to the functional units of the designs

because of the focus within this analysis. Nevertheless, the FUs make up the dominating part

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 36

of the total energy consumption. For example, in the FDCT benchmark, the FUs contribute

68% of the total energy consumption whereas the remaining 32% split up for multiplexer,

registers, controller, and clock tree. As the results show, active state leakage current is

effectively reduced throughout all benchmarks.

Figure 18: Design examples and the effectivitiy of power gating in a global sleep state

In the following, a deeper analysis of the FDCT benchmark is examined in order to show the

impact of the continuous parameters temperature and supply voltage as well as the discrete

parameters process corner and PGS selection. For this analysis the Nangate 45nm technology

has been chosen in typical and fast process corner. Furthermore, the HVT version has again

been selected for sleep devices and the sleep device sizes have been fixed to 2% of each RTL

component size. HVT devices require a higher supply voltage. Thus, its range is constrained

to [1.1V;1.3V] whereas the temperature is examined across its whole range of [27°C;127°C].

Figure 19 then shows the gating-switch effectivity as a ratio of sleep/active current and the

break-even time of the overall FDCT design in nanoseconds.

At first, it can be seen that the effectivity of power gating has only a small variance across the

parameter ranges. It becomes only slightly less effective in suppressing leakage currents if the

temperature increases.

The supply voltage has also only a marginal impact on the effectivity. Additionally, there is

only a small variation between 2% and 4% among the different power gating schemes. In

other words, leakage is reduced by 96-98% in all cases and, from the point of pure leakage

saving, the PGS selection is not particularly interesting if all surrounding parameters are

identically.

Secondly, the break even time is presented. Unlike the gating effectivity, the break even time

diminishes with increasing temperature and supply voltage. This is because the wake-up time

is much lower and less incomplete transitions occur during the state transition. With a factor

of up to four, the variance is also much higher. Furthermore, the PGS selection highly impacts

the break-even time. As it can be seen, PMOS schemes have up to two times higher break-

even times. Comparing the two process corners, the break even time is also about twice as big

for the typical process corner than that of the fast process corner.

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 37

Figure 19: Comparison of power gating scheme efficiency and dynamic parameter impact

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 38

The wake-up time at system-level is given by the maximum RTL component wake-up time if

the supply grid is assumed to be sufficiently dimensioned. Figure 20 shows the wake-up time

of the FDCT benchmark in dependence on the temperature and supply voltage parameter for

the aforementioned gating types and process corners.

Figure 20: Wake-up time evaluation of the FDCT design

It can be observed that the wake-up time shows a very small variance in the parameter ranges.

It slightly decreases with increasing supply voltage and increases with a raising temperature.

Furthermore, at the fast process corner, it is about 20-30% smaller as it is at the typical

process corner. A comparison of the PMOS and NMOS gating schemes shows that NMOS

schemes are about three times faster in waking up.

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 39

3.2 Memory optimization

3.2.1 Introduction

The memory optimization tool aims at optimizing the memory hierarchy of the system under

analysis using total memory energy as a metric; however, the optimization strategy based on

sub-banking being considered for SRAMs is also beneficial to mitigate aging effect caused by

Negative Bias Temperature Instability (NBTI). This section will first summarize the

assessment of the energy benefits obtained by the memory optimization tool and eventually

present the details of techniques to concurrently achieve reduced energy and extended

lifetime.

3.2.2 Energy Optimization of scratchpad memories

Many strategies for reducing dynamic energy of memories proposed in the literature rely on

the paradigm of splitting a memory array ([4], [5], [6]). Section 3.2.1.3 of D3.2.1 explained

how splitting the address space into multiple, independently accessed memory sub-blocks can

provide significant reduction in energy consumption. Memory sub-banking is beneficial for

energy in general because of the non-uniform distribution of accesses to memory locations.

Even a naïve partition of two identical sub-blocks guarantees a sizable reduction of average

energy. The search space of all possible memory partitions can be easily enumerated by

observing that a partition is completely defined by a set of address boundaries (e.g., a bi-

partition can be characterized by the addressing around which the memory is split into two) .

Options for searching the space include Top-down branch-and-bound search [4] or a bottom-

up one based on dynamic programming [4]. This allows solving the problem optimally in

polynomial time in spite of an exponentially-sized search space.

Section 3.1.3.1 of D3.4.2 presented detailed energy results for the tool in the standalone

MEMOPT version. Here in the following figures, we show the percentage of energy reduction

by splitting the memory in two partitions. The first set consists of three sample applications

provided with the ReISC distribution, whereas the second set is a subset of the MIBENCH

benchmarks, which are widely used in the embedded systems community. All applications

were compiled using the ReISC toolchain and a fixed set of compiler optimizations. Figure 21

shows results for the ReISC sample applications and Figure 22 show results for the

MIBENCH kernels.

Figure 21. Energy Reduction on ReISC sample applications.

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 40

Figure 22. Energy Reduction on MIBENCH sample applications.

Above figures clearly exhibit the benefit obtained by partitioning the memory into two blocks,

providing 80 to 85 % savings in almost all cases. Certainly these savings can be further

enhanced by increasing the number of partitions.

3.2.3 Concurrent Aging and Energy Optimization of scratchp ad memories

3.2.3.1 Overview

Traditionally, power and reliability have been considered as conflicting metrics, since most

design solutions for improving reliability (redundant circuits, strong signals, large devices)

are intrinsically power inefficient. However, the recent emergence of reliability issues in the

form of aging (i.e., temporal drift of performance) of devices has opened a new perspective of

this dichotomy. Such a benefit can be especially exploited in SRAM memory structures,

which are particularly sensitive to NBTI effects: given their symmetric structure, they cannot

in fact take advantage of value-dependent recovery.

The most effective solutions rely on the observation that typical power management strategies

(i.e., voltage scaling for dynamic power and power/ground gating for static power) can be

exploited to reduce NBTI-induced aging [10], [11]. Therefore, proper re-visitation of power-

managed memory/cache architectures according to an aging-related metric can achieve

concurrent energy and aging improvements [12], [13], [14]. In this deliverable the memory

optimization strategy based on sub-banking used to obtain energy-efficient SRAM

architectures, is also investigated to extend the lifetime of the memory and some additional

techniques are presented to further improve the aging benefits.

3.2.3.2 Aging: Background and Preliminaries

Aging of devices has emerged as the latest challenge brought by technology scaling. Thinner

oxide layers, higher electric fields and operating temperatures, induce adverse physical and

chemical phenomena that cause transistors to deteriorate their performance over time.

COMPLEX/POLITO/R/D3.2.2/1.0 Public

Final report on embedded software and memory optimization

Page 41

Deviation from the ideal behaviour of manufactured devices is the most critical downside of

technology scaling beyond the 90nm node. The most evident type of non-ideality is related to

the non-determinism of devices due to process variations [15]. They are mostly due to random

fluctuations of dopant atoms and to the systematic or non-systematic impreciseness of the

manufacturing process, and can be viewed as a sort of ôtime-zeroô, fixed deviation from the

nominal behaviour of each device.

There exists however another, and even more insidious, type of non-ideality resulting from

technology scaling, namely, time-dependent deviations in the operating characteristics of

devices [16]. Two are essentially the sources of time-dependent variations: Bias Temperature

Instability (BTI), and Hot Carrier Interface (HCI). These physical/chemical effects result in

the degradation of the oxide thus causing a drift of the threshold voltage over time.

Bias Temperature Instability (BTI) has emerged as the most critical wear-out mechanism for

MOS transistors below the 100nm node. It manifests itself as a time-dependent, permanent

increase of the threshold voltage Vth of active transistors. Although BTI occurs in both n-type

and p-type devices, at the current technology nodes, i.e., 65nm and 45nm, only pMOS

transistors are significantly affected, the NMOS transistor has a negligible level of holes in the

channel and thus, does not suffer from the BTI degradation.

NBTI occurs when a pMOS is negatively biased (i.e., a logic ô0ô is applied to the gate of the

pMOS, resulting in Vgs = īVDD), and manifests itself as an increase of the threshold voltage

with time, resulting in the reduction of drive current and noise margin, causing in turn a

degradation of the delay of a device.

The actual amount of degradation depends on several parameters of a device, such as its logic

function, threshold voltage, size, load, and temperature [17]. From the design standpoint,

however, the most important property of NBTI is its dependence on the logic values. The

threshold voltage (and delay) degradation effects occur only when a pMOS device is in its

critical state (the stress states), that is, when a logic ô0ô is applied to the device inputs. In fact,

when a logic ô1ô is applied, NBTI stress is actually removed, resulting in a partial recovery

(i.e., a decrease) of the threshold voltage (the recovery state) as depicted by Figure 23.

Figure 23. NBTI effect on pMOS.

