Public

FP7-ICT -2009 4 (247999) COMPLEX

SEVENTH FRAMEWORK
PROGRAMME

COdesign and power Management in PLatform
based design space EXploration

Project Duration 200912-017 20130331 Type IP

H WP no. Deliverableno. Lead participant

@.PLE)tl_ WP1 D14.2 SNPS

Framework for platform based
designspace exploration

Prepared by Bart Vanth ournout (SNPS, Hector Posadas (UCRaul Valencia Pérez
(GMV), Philipp A. Hartmann, Kai Hylla (OFFIS), Emanuel Vaumorin
(MDS), Gianluca Palermo (POLIMI), Massimo Prando (POLITO) , Davide
Quaglia (EDALab), Eddy De Greef (IMEC)

Issued by OFFIS

Document NumbéRev. COMPLEX/ SNPSR/D1.4.2/11
Classification COMPLEX Public

Submission Date 20130503 [updated 201305-31]
Due Date 2012-12-31

Project co-funded by the European Commission within the 8venthFramework Programme (2007-2013)

© Copyright 2013 OFFIS e.V., STMicroelectronics srlISTMicroelectronics Beijing R&D Inc, Thales
Communications SA, GMV Aerospace and Defence SHPS Belgium NY EDALab srl, Magillem Design
Services SAS, Politecnico di Milano, Universidad de Cantabria, Politecnico di Torino, Interuniversitair Micro
Electronica Centrum vzw, European Electronic Chips & Systems design Initiative.

This document may be copied freely for use in the public domain. Sections of it may be copied provided
that acknowledgement is given of this original work. No responsibility is assumed by COMPLEX or its
members for any apliti@n or design, nor for any infringements of patents or rights of others which may result
from the use of this document.

COMPLEXSNP#&R/D1.4.2/11 Public
Framework for platform based desigpace exploration

History of Changes

ED. |REV.| DATE PAGES| REASON FOR CHANGES

BVt 1.0 |201305-02 75 Public version

PAH | 1.1 |20130531 79 Updated with integration summary (Sect@®n

Page?

COMPLEXSNP#R/D1.4.2/11 Public

Framework for platform based desigpace exploration

Contents
1 Scope Of thiS DOCUMENL.........uuiiiiiiiiiiiiit ettt erer e e e e e e e e e e e ammn s 5
2 COMPLEX DESIGN FIOW......uiiiiieiie et eeee et mmme e e 6
FZ20% R [1o o 1§ o o o TP 6
IMIDA dESIGN ENMIY...eiiiiiiiiiei et e e ceeeis e e e e e e e e e e e et e e e e e mnmeeeeeeeeeesssennnnnn s emmrnnnned 6
Executable SPecCifiCatiQn...........covvviiiiiiiiiieeceeeee e
Estimation & model generation..................uvvvviiccceeieeeeeeiiiiiesse s erensnnnne e
0 110101 F= 11 o] o U PPPPTPRRPRPPPIN 8
EXxploration & OptimiSation...........cceeeiiiiiiiiiiieee e 8
2.2 MDA DESIGN ENY. ittt 9
2.2.1 UML/MARTE DeSIgN ENtrY....cccoveiiiiiiiiiiie s eeene e 10
2.2.2 Matlab/Stateflow Design ENtry........cccccuuiiiiiiiiiiieeeiiiiiiieee e 12
2.3 Estimation and Model GEeNeration.............ccccviiiiiieeeiiieiiiiiiieeeeeeee e 13
2.3.1 Task separation / Testbench generation............ccccccoeiieeeeiiiii s 13
2.3.2 Source Analysis and Augmented Code Generation (SW tasks)............... 13
2.3.3 Source Analysis and Augmented Code Generation(HW tasks)................ 14
2.3.4 Block annotated C++ (BACHE)......ccciiiiiiiiiiiiiiiemme et emrannnae 15
2.3.5 Virtual SYStem GENEIALQL.........uuuiiiiiiiiiiie ettt 17
2.3.6 Global resource manager (Roptimized Power Controller)...........c.............. 18
2.3.7 Summary: Model Estimation and Generation FLOW..............ccccvvvvieeeeennnnn.. 19
2.4 SIMUIBION ..o eeet bbbt r e e e e e e e e e e e e e s eemreaeaeeeeeas 20
2.5 Exploration and OPtiMIZAtiON...........ccoiiiiiiiiiiiiieeeieeeeeee e eene e 20
2.5.1 Simulation Traces and ANAIYSIS...........coovviriiuiiiicreeeeeeeee e eeeraaaans 21
2.5.2 Design Space EXPIOration.........ccccooiiiiiiiiicceeeeee e 21
2.5.3 DSEXML INtEITACE.....ccii ittt 22
3 Application and platform definition and generatian..................ccevvieeeiiiiiiiieeeeeeeenn. 24
3.l OVEIVIBW. . .uiiiiiiiiiiiiieieee ettt eeett ettt ettt e e e e e e e e e e st e e e e e e e e e eaeeeeesssasnnmnneeeeeseannnnns 24
3.2 TOOIS SUMIMAIY ...ttt ireea bbbttt e e e e e e eeees e e e e e e et et e e e e e e e e e e e e s ammeeeeas 28
3.2.1 UML/IMARTE TC .ottt s 28
3.2.2 HIFSUIte/StatefloW........euueeeieee e 30
3.2.3 HIFSUILE/AZT .ot enennnes 31
.24 IP-XACT TC ..ttt eeeet et e e e e e e e e e e e emmmreeeeeeeeaeaaaaeaaaeeeeasammneeeas 33
3.2.5 SMOG ... it ea ettt ittt e e e e e e e e e e aanr et et e e aaaee s 35
3.2.6 POWEIOPL. ...ttt e e e e e et ———— e 36
Bi2. 7 SV AT ettt nnn s 37
3.2.8 SYNOPSYS V.ot 39
e] 11 | USRS 40
B.2.10 MOS T it e it aan—— ettt e e e e e e e e e e e a i e aaaaaann 41
3.2.11 MMCO/MEMOPT ...ttt ettt e e rmmme e e e e e e 44
3.2.12 IMEC-GRM ...ttt e e e e e e e e e et e e e e e e e e e e e e e nnnas 45
4 Design Spag exploration FIOW..............oiiiiiiiiiiiceeis e a7
4.1 USE CASE 1i Toolchain DeSCriptiOn..........coiiiiiiiiiiiiieees s 48
4.1.1 Description Of the USEASE.........cooiiiiiiiiiiiiieeee s 48
4.1.2 Integration with the DSE Frameworkuuuviiiiiiieeciiiiiiiiiiiiiiieeeeeeeee 50
4.2 USE CASE 2 Toolchain DeSCHPLION.........oiiiiiiiiiiii e ceeee e 52
4.2.1 Description Of the USEASE...........coiiiiiiiiiiiiiiieer e 52
4.2.2 FIOW COVEIAQE.....cccieiieiiiiiiiiii ittt s s s e e e e e e e s eeeess s s e e e e e e e e e e e e e eeeeeeanenss 53
RUIHIIMIB. .. e e e bbb e e 55

COMPLEXSNP#R/D1.4.2/11 Public

Framework for platform based desigpace exploration

~N o O

4.2.3 Integration with the DSE Fram@rkcccoviiiiiiiiiiiiene e 56
4.3 USE CASE 3 Toolchain DesCriptiOn..........coiiiiiiiiiiiiieeee e 57
4.3.1 Description Of the USEASE..........ccovvviiiiiiiiicccmr e 57
4.3.2 FlOW COVEIAQE......ceiiiiiiiiieieee e eene e 59
4.3.3 Integration with the DSE FrameWo..............cccoovviiiiiiiiimme e 62
Integration of the COMPLEX flOW.......ccuiiiiiiiiiiiii e 74
B0 [0] 0 4=V PP 78
] (=] C=T o = T 79

Paged

COMPLEXSNP#&R/D1.4.2/11 Public
Framework for platform based desigpace exploration

1 Scope of this document

This deliverable isa public overview of the work done iwork packageWP1Requirements,
specification and integration to holistic design environm@tart: M1- End: M40), with a specific
focus on the design space exploration aspects of the design flow.

This deliverable doauents the COMPLEX design approadhgives an overview of the holistic
platform based design space exploration flow with industrial and academistodiss to cover the
entire flow.

The COMPLEX flow follows a platform based design approach where thetidoality and
architecture view of the system are separated.

The first goal of this deliverable is tarovide an overviewofthe COMPLEX design flowand to
describe main interfaces in the COMPLEX design flavich enable interoperability among all
involved partners. As described in the DoW these requirements are focused on:

AApplicati ond a n:dDefimds ithm duhctionad \eées afr thepsysteimciuding the
definition of the initial, functional and nefuinctional specification methodology using MARTE.
Matlab/Stateflowisalso required as an additional system modelling input incorporating dynamic
system behaviour.

Platform description:Defines the architectural view of the system. It includes the defindiahe
MARTE HW resource modelling methodology supporting the specification of the execution platform.
From this initial architectural specification, the correspondin AT description will be generated.

Model generation and coeftinction definition:Define the step needed for build the system model
starting from the application and platform description. Models generation and cost function definition
should take care of the design space exploration feedback loop that can be done automatically or
manuallyby the designer.

Tool interface identificationldentification of the required tool interfaces for a shared methodology for
granting the interoperability of the different EDA and the design processfiearkThe tool interface
identification should be de taking into account the specific needs of each COMPLEX use case
defined in D1.1.% Definition of requirements, industrial usases and evaluation strategy.

The document structure is mainly composed by three parts: Ther@gstiescribes the COMPLEX
design flow presenting each step in terms of goals and requirersertshapter?), the seconane
presentsan overview of thetools as they are sl for application and platform definition and
generatiorn(seeChapter3), while the thirdone gives abrief overview of the case studies done dgrin
the project and how they cover the overall design fleee Chaptet).

Pageb

COMPLEXSNP#&R/D1.4.2/11 Public
Framework for platform based desigpace exploration

2 COMPLEX Design Flow

2.1 Introduction

The overall COMPLEX Design Flow as defined in the Description of Wblrks split into a variety
of different intermediate steps as depicte&figure2-1.

__)
2 MARTE
<% PIM or) constrained PDM
Sc | Matlab/ USE-Cases | | Lwisw sep. D(:s'ac“r'lg:;'n
‘D Simulink & mapping Model)
8
a
25
oE
28
7
e

=2

parameters for
new design space
instance

estimation & model generation
SystemC

exploration & optimization
metrics

power/performance

L S e L e YT L

Figure2-1: Complex Design Flow

MDA design entry

COMPLEX provides an MDA (Model Driven Architecture) design elfy usihng the MARTE UML
profile as well as the Stdtew and Simulink tools. Thelatform independenmodel (PIM) specifies

the application or behaviour model of the syst&ime usecase scenario of the PIM is defined using
UML or Matlab/Stateflow(b). The systenspecification model describes the system functionality and
synchronisation points through abstract communication channelsh@nglshake) and defines some
kind of communication scheduling. Thglatform description model (PDM)(d) describes the
interconrection of allocated execution and memory resources. The-casstrained HW/SW
separatiorand mapping(c) describes the binding of the processes in the platform independent model
to execution units and memories of BM.

Page6

COMPLEXSNP#&R/D1.4.2/11 Public
Framework for platform based desigpace exploration

Executable Specification

As the PM is a pure specification model, for functional evaluation it is either simulated directly using
the Mathworks tools, in order to analyse and optimise the network performance, or converted to an
executable SystemC mode) for the detailed platform desig This model contains functional
descriptions of tasks that will run as usiefined hardware like ASICs, as software on a processor, or
are provided as Heomponents from thirgparty vendors. The latter ones are requijest for
functional simulation agh are not being modified during the subsequent flow. In order to execute the
SystemC model specified (), it needs to be stimulated. The stim(i might originate from user
interaction or communication with other components that are part of the mmeind. External system
stimuli are derived from the MARTE usmase specifications or from the environment model in
Statdlow/Simulink (b). The IRXACT platform specificatior{g) consists of blocks (components) with
interconnected interfaces. Each bock espnts an IP component that can be configured and
characterized by the use of mekaa annotations. RACT allows different views on each IP
component. To enable higipeed TLM simulation, a view with associated SystemC and -ZI(M
descriptions can be ed. The IP component medata (area, delay, power, etc.) can be described by a
nonfunctional view. The IPXACT description is generated from the MARTE P¥). From the IP

XACT platform specification a structural téevel view of the platform architeatel is assembled. It
consists of processing elements, dedicated hardware, memories, and interconnects. COMRLEX do
not use interconnected RTL components but virtual platform IP components. Their behaviour is
modelled in SystemC and their communicationriiatges are OSCI TLM2 compliant. Consequently

all interconnection models used in COMPLEX are also TLM2 compatible.

Estimation & model generation

Step(h) collects all information from the executable specification phase, parses and
analyses/elaborates the sBmC specification model, reads the mapping information, and the IP
XACT platform specification metdata. All these information are written to an internal design
representation. From that internal representation the behaviour description of each comgoiten
extracted and forwarded to the domain specific analysis and synthesis tools. Behaviours mapped to
dedicated HW resources (HW tasks) are forwarded to existing source analysis and behavioural
synthesis tool§i). Behaviours mapped to SW resources,general purpose processors or digital
signal processors, are forwarded to existing source analysis and cross compilatiqf).tools
Additionally test benchewith activation traces and constraints for the behavioural synthesis and cross
compilation aredrwarded to these third party tools. HW tasks which shall be implemented in custom
hardware enter blodk) together with typical input stimuli (input data and active/idle statistics) as
well as synthesis constraints (such as technology node, threshtadevavailable area, etc.). Each

task is then analysed and fully synthesised (scheduling, binding, allocation, implementation ef power
management methodology, controller generation, f{danning, etc.) down to Rlevel using third

party behavioural syhesis tools. Finally, code iRAC++ (Block AnnotatedC++) is generated. The
BAC++ is clustered, in such way that rtime or power variable control structures, as well as bus
requests are separated. Delay, static power, dynamic power, and variation information are
instrumented to the behavioural C++ code so that a power and delay simatation can be
performed via code executionh@ SW task's code will banalysedand crossompiled by existing

third party tooldj). During analysis metrics like power consumption and wcase execution time

are estimated and a model is generatethfthat data. Identically to the behavioural synthes{9 in

code iNnBAC++ is generated by the cresempiler backend. Block (k) represents SystemC/TLM2
performance and power characterized platform IP components like HW accelerators, communication
resouces (bus, pointo-point channel), and memories. Thetual system generatol(l) reads the
BAC++ from (i) and(j) and takes the instantiated virtual IP component models (kpnThevirtual
systemgenerator assembles these different input blocks tx@cutable system model. Therefore, the
instrumented code coming fori) and(j) needs to be connected to the remaining virtual platform IP
components, using the OSCI TLM2 API. The output of this generator is a complete performance and
power aware systemadel with up to basic block accuracy.

Pager

COMPLEXSNP#&R/D1.4.2/11 Public
Framework for platform based desigpace exploration

Simulation

The custom hardware, synthesizedijnand parts of the virtual platform IP components, specified

in (k) providedynamicpower managemerfDPM) abilities. For the first iteration of the entiRSE,

an initial power controllefm) wi | | be automatically generated, CC
state based on the transition cost and the activity distribution. Afterwards, the DPM policies can be
modified by the user or automatically refined. The generagste®1IC mode{n) can be compiled and

directly executed on the host machine of the designer. The instrumente®aatte+] allows writing

different simulation traces under employment of the specified system input gfinthliough use

casegb). The granlarity of tracing information can be parameterized to the needs of the analysis and
exploration step. It is expected that full tracing will slow down the entire simulation dramatically,
which makes an appropriate choice of granularity extremely impofthaattracing granularity can be

chosen for each component independently and can be refined hierarchically. This allows a more fine
grained monitoring of certairinterestingc o mponent 0s behavi o-grainedand a
monitoring of other components.

In case of networked embedded systems, e.g., wireless sensor networks, COMPLEX will also address
the simulation of communications among embedded systems since this aspect is significant in the
assessment of the performance of the design solutions and thénefoeedesigrspace exploration

and optimisation.

Exploration & optimisation

The simulation tracéo) contains timing, dynamic and static power information (with respect to
process variation) of each platform component, related to the executed workload as well as other
relevant metrics like memory usage. Udefined module, port, process, and functimmes from the
system specifiation(a, € are preserved to ensure traceability to the input model of the executable
specification. Simulation traces of each platform part are read into an analygjs) td¢hin tasks of

this tool are extraction of activityand poweirelevant data of the different platform parts and te pre
process these data to be either graphically presented to the dégjgmeto be used by automatic
explorationand optimization toolr). The visualization enging) will take power ad activity-data
prepared by the analysis tdp) and present this information to the designer. One possible
visualization type is a platform powbreakdown in which the power contribution of all platform parts
can be inspected. Platform evaluation antingipation(r) is two-fold. On the one hand the user can
constrain the overall platform selection, deduce further constraifBA/®W separation, or identify
powerconsuming implementations and replace them with p@ffarient ones. On the other hand, the
automatic exploration and optimization tool is based on robjgctive optimization heuristics to
efficiently navigate the overall design space defined)irOnce obtained the design space definition,
the exploration tool starts an optimization loofemacting with the rest of the COMPLEX design flow

to find the optimal system configuration in terms of a user constrained target function. In the
optimization loop, the DSEramework generates a new design space ins{ahte be automatically
evaluatedy the rest of the COMPLEX design flow, which returns the power and performance metrics
(scalar values format) frop). All information gained from the platform analysis and optimization
phase will serve as input and feedbé&kto the next iteration ofhe platform refinement flow and

thus will lead to an optimized executable sfieation of the overall system.

To ensure a seamless interaction between these steps, a careful definition of specification formats,
model descriptions, and tool interfaces twbe defined. In this document, the continuous evolution of
the required definitions is documented as they are refined durimgtnge of the COMPLEX project.

The following sections are organised according to the different phases of the COMPLEX Design
Flow. Every connection between different design/tool tasks in the flow is covered and the
corresponding requirements for the tool interfaces, model descriptions etc. are discussed.

Page3

COMPLEXSNP#&R/D1.4.2/11 Public
Framework for platform based desigpace exploration

2.2 MDA Design Entry

COMPLEX project supports two different modetiven captue mechanisms for modelling embedded
systems, the UML/MARTE design branch and the Matlab/Stateflow design branch. The selection of
the design branch depends of the project specific necessities and company choices. However,
UML/MARTE is more appropriate irhe case of large projects and whenever there is a necessity of
performing design space exploration. The following depicts the two different design branches in
COMPLEX:

MDA Design Entry

I
I

UKMLMARTE Statefiow
! Branch Branch
I
I

HW/SW Task
—i| seperation and test el
banch generation

Figure2-2: ModelDriven Architecturedesign entry

The UML/MARTE design entry for COMPLEX covers all activities of the COMPLEX design flow
depicted in picturd-igure 2-1 related with the MDA entry and executable specification. Next figure
shows the different modelling activities and output artefacts derived from them

1 Activities (a)and(e)Figure2-1), covered by UML/MARTE PIM modelling activity, which outputs
the MARTE PIM, CFAM model and the SystemC executable specification of the application.

1 Activities (b)and(f)(Figure 2-1), covered by the UML/MARTE Stimuli Definition activity, which
produces the System Input Stimuli for the exercise of the SW and HW parts of the system.

1 Activities (d)and (g) (Figure 2-1), covered by the UML/MARTE PDM modelling activity, which
outputs the MARTE PDM and the-lRACT specification of the system platform.

1 Activity (c) (Figure2-1), covered by the UML/MARTE PSM modelling activity, which produces
the MARTE PSM model and the different XML files which enables the design explo(Xiith
system description and XML design space).

Paged

COMPLEXSNP#&R/D1.4.2/11 Public
Framework for platform based desigpace exploration

UML/MARTE Design Entry

UMLIMARTE
PIM

UMUMARTE -~~~ "~~~ 71~ ~~~~=====7°f~=====797~~~=~ -
~==12{ PMModeling }-=~7 777177777777 1==m==m========> CFAM Model

SystemC
Specification

IP-XACT
________________________ r Specification

UML/MARTE
FDM Modelling

' UML/MARTE
PDM

r
System il I SR A IR UMLMARTE N = System Input
Specification F---- Stimuli Definition Stimuli

UML/MARTE
PSM

————————————————————— ! XML System
Description

UML/MARTE
PSM Modeliing

XML Design
Space

Figure2-3: UML/MARTE DesignEntry

On the other side, the Matlab/Stateflo@sign entry for the COMPLEX project covers only a subset
of the activities of the COMPLEX design flow depicted in pictbiigure 2-1 related with te MDA
entry and executable specification.

In particular, it covers activitie@)and (e)for the generation of the SystemC executable specification
of the application and activitieh)and (f)for the generation of the Input Stimuli to exercise the
modelledsystem.

2.2.1 UML/MARTE Design Entry

The COMPLEX modelling methodology isising a UML/MARTE input able to describe a
heterogeneous embedded system composed of SW and HW components, and feeds the simulation and
design exploration processes that enable findiegofitimum architectural mapping. Additionally the
COMPLEX modelling environment supports the aforementioned COMPLEX modelling methodology

via the usage of stat#-art capture tools.

The COMPLEX transformation toolset enables the generation of a Systeroificsption model from
the UML/MARTE modelAn overview of the UML/MARTE input flow is shown in the picture below
and consists of the following steps:

PagelO

COMPLEXSNP#R/D1.4.2/11 Public

Framework for platform based desigpace exploration

T Texecutabie 1~ ~ MDA !

a)

d)

specification | design entry |

MARTE user MARTE
PIM or constrained PDM
Matlab/ USE-Cases | liwrsw sep. ez,

Simulink & mapping Modal)

architecturefplatform
description
{(IP-XACT)

specification
in SystemC

MARTE PIM and System specification in Systemihe goal of this step in the COMPLEX
flow is to capture aPlatform Independent Model (PIM) of thapplicationthrough the
MARTE frontend and to generate a Concurrent Functional Application Model (CFAM) and a
SystemC specification.

Use cases System Input Stimuli and Test bench gener#ttirmough one of the fadwing 3
approaches:

a. A methodology to design the test bench environment in parallel with the system
model within the same modelling environment.

b. A methodology to specify test cases and their associated requirements supported by
the systermodellingenvironment.

c. A mechanism to associate input stimuli to system components.

Usergenerated HW/SW Mapping and Task separatibine UML/MARTE modetdriven
front-end regarding the definition of HA®W partitioning and mappindefines a mechanism

for user orthe DSE tool to modify under user specified constraints, the HW/SW partitioning
and mapping

MARTE PDM and Architecture Description @RACT): In the UML/MARTE modeldriven
front-endthe definition and transformations of the PDM is definmder a standard forth
(IP/XACT) that enables the exportation of the optimum hardware platform found in DSE,
serving for different uses (e.g., for serving as input for the virtual system generator, and for
implementation phases).

Pagell

COMPLEXSNP#&R/D1.4.2/11 Public
Framework for platform based desigpace exploration

2.2.2 Matlab/Stateflow Design Entry
The Matlab/Steeflow modetdriven frontend can be summarized by the following points:

a) A COMPLEX modelling methodology based on Matlab/Stateflow able to describe the
dynamic behaviour of an embedded system as a function of input stimuli.

b) The COMPLEX modelling environnm¢ supports the aforementioned COMPLEX modelling
methodology via statef-art capture tools

c) A COMPLEX transformation toolset enabling the generation of a SystemC specification
model from the Stateflow model.

An overview of the Matlab/Stateflow input floig given in the picture below and consists of the
following steps:

r — — — — — — — — — — — —
I £ | MARTE
c
| @ PIM or
Ié = Miatiatss use-cases
] @ Simulink
I o
-
|1:IJ- =)
o E
Is 3 system system
13 = | specification input
I % @ | in SystemC stimuli
€
l w

a) Stateflow System specification in Systenf®@e goal of this step in the COMPLEX flow is to
capture a Platform Independent Model (PIM) of the application through the Stateflow front
end and to generate a SystemC specification.

b) Use cases System Input Stimuli and Test bench gener#timugh one of the following 3
approaches:

a. A methodology to design the test bench environment in parallel with the system
model within the same modellirgvironment.

b. A methodology to specify test cases and their associated requirements supported by
the systermodelling environment.

c. A mechanism to associate input stimuli to system components.

Pagel2

COMPLEXSNP#&R/D1.4.2/11 Public
Framework for platform based desigpace exploration

2.3 Estimation and Model Generation

2.3.1 Task separation / Testbench gener ation

C/CHE/SystemG HW/SW
Executable Model mapping

Task Separation

Estimation Tool

Figure2-4. Basic Task Separation Flow

In this step of the design flow, the executable input specificatientigito severaltasks The task

borders may arise fracommunication boundarigfunctionality, user constraints, or could be taken

from allocation/mapping information from the MARTE modebr every specified task, an executable

input model for a downstream estimation tool is generated. This input consists of the source code that
implements the separated task, a test bench for executing the task stand alone, and a Makefile to build
the separated executable model. In case the separated task requires stimuli data, the task separation
and test bench generation tool can also be usedadtecae instrumented version of the original task
specification.Together with the original input model the instrumented code can be used to generate
stimuli data for a taskThe stimuli data can be used as additional input to the estimation tool, in case
the estimation depends on activity patterns. The generated test bench does not only complete the
separated task to form an executable model. It can also be used to execute and test any executable
output model thais generated by the estimation tool.

2.3.2 Source Analysis and Augmented Code Generation (SW tasks)

Separated Test Bench &
Source code Makefile

SwW

SW Estimation Tool
Stimuli BACH

Figure2-5: SW-BAC++ generation flow

This step implements two main features of the software rgbateihn of the design flow:

a) Software task analysis

Pagel3

COMPLEXSNP#&R/D1.4.2/11 Public
Framework for platform based desigpace exploration

b) Augmented code generation

Since the two processes are strictly related, they are considered as a single design flow step. More
precisely the augmented code generation need the information (costs and program structure) derived
by the analysis phase.

a) Sourcecode AnalysisThe analysis of the source code has the goal of building an abstract
model of the source code of a given task. The input of this step is a software task in the form
of a set of C language source files. The output is constituted by the rgauméles annotated
with estimation of the nefunctional properties beingnalysed Report and traces can also be
generated as bgroducts of the analysis flow.

b) Augmented code generatioiihe norfunctional model produced in the analysis phase is
rearraiged in such a way to obtain a new modegpresenting the exact behaviour of the task
I that can be simulated along with the rest of the architecture. Simulation of the augmented
code model includes accounting for execution time and power consumptioB|l @s other
dynamic norfunctional properties that might be potentially of interest within the flow.

2.3.3 Source Analysis and Augmented Code Generation(HW tasks)

Separated Test Bench &
Source code Makefile

HW

Stimuli HW Estimation Tool BACH:

Figure2-6: HW-BAC++ generation flow

This steps composed bthreemain features:
a) HW task analysis
b) Augmented code generation
c) Support for different power modes

Those two features are strictly correlated and included within a single design flown step stepthe
nonfunctional properties of HW taskare estimatedn terms of power and timing. Using this
information aself-simulating model of the relevant tasks is created that will be used during simulation
of the virtual system prototype

a) Analysis First, the higHevel description C/C++/SystemC) of the task is analysethis
analysis bases on a higgvel synthesis. That is, based on the given C/C++/SystemC
description a poweoptimized RTL model is generated. Using a functional simulation of the
RTL model, typical data pattern for all eqations are obtained, which are the basis for the
power estimationDuring estimation several ndanctional properties like dynamic and static
power as well as timing are obtained, according to the syntbessiraints given by the user
and by the DSEool, respectively.

b) Augmented code generatiddaving the estimateRTL description availabla selfsimulation
model of the descriptiois createdNext tothe functional behaviour, this modako contains
the nonfunctional information, obtaineduring analysis. The model igsed during simulation
of the overallvirtual systemprototype This self-simulation model ismplemented using

Pagel4

COMPLEXSNP#&R/D1.4.2/11 Public
Framework for platform based desigpace exploration

BAC++ (see Sectio.3.4. For each block identified inside the RTL implementation of the
behaviour, the functional part contaithe number of clock cycles required by the HW to
execute that particular block and the capacity switched during execution. Data dependency of
the switched apacity is considered statistically.The Honctional model contains
information abousupply voltageand clock frequency for each power mdde actual clock
frequencyis used by th@bservelto calculate the time, a certain piece of behaviour consumed
during execution. The switched capacity together with supply voltagesetsed to calculate

the power dissipation during execution. When switching from one power mode to another, the
execution time is increased bByenalty, specified in the power modblke. The same applies

to the energy.

c) Support for different power mod&airing code generatigra powercontroller is generated
which allows setting the hardware component, implementing the task, into individual power
modes. For mode selection emerface is provided that can be used by the power manager of
the complete systenn order to find a good power management policy for the overall system,
analysis of the system also provides information about additional costs and penalties regarding
switches between power modas well as information about average power dissipation and
leakage This information is provided through a power mode table.

2.3.4 Block annotated C++ (BAC++)

Block annotated C++ (BAC++) enrielsthe functional model of a certain behawi with additional
information representing the hardware, executing the particular behaviour. This information is used
during simulation to obtain information about the power and timing.

In general, the augmented G¢ede contains three parts:

a) The functimal behaviour including estimated values, depending on the actual behaviour
during simulation e.g., switched capacity, clock cycles, instruction cetant,

b) the nonfunctional model containing information about values that are independent from the
actud behaviour like static power, for example;

c) an observetranslatingthe measured values into the metrics required by the user that is power
and timing.

Values related to thiunctional behavioupf the task are represented in terms of per block atatbta
C++ code. That code is bufitom (basi€) blocks, each one containing a small part of the behaviour as
well as metrics for power and timing estimation, directly depending on the behaviour. For HW this
isthe switched capacity and for SW the instruction ¢tofor example. During simulation, different
blocks are executed, depending on the actual control flow, caused be the applied input stimuli.

The nonfunctional part does not depend on the actual behaviour, but it depends on the HW
implementing/executing éhbehaviour. It also depepsd N t he processing unitéés
That is, noAunctional values may be influenced by the overall power manager by setting the power
modes of the processing unit.

The observercombines information from the functionahd from the noffunctional model, in order

to obtain the metrics required by the user and the -I8E respectively. Thus, it translates the
metrics, obtained during BAC++ simulation into the values that should be traced. In order to reduce
the amount bdata created during system simulation, the observer is also able to perform seme pre
processing e.g., sliding window averaging.

It is important to note, that the valuesrichingthe functional modedepend on the type of the
processing unit implementifexecuting the behaviour. Thusach of both characterisatifiows

Pagel5

COMPLEXSNP#&R/D1.4.2/11 Public
Framework for platform based desigpace exploration

(and(j) from Figure2-1 will create BAC++ monitoring different values. Same applies to the-non
functional model. As just mentiongthe particular observer is responsible for translating the values
from the functional and the ndanctional model into the metrics required by the user. It is also
important to note, that the observers for both, -BAC++ and SWBAC++ use the same API to
communication with the trace file generator.

Component
characterisation

Operating mode table
-1D

- vdd
Power controller i
generation o e
- penalty (delay)
- etc.

Runable (BAC++, incl. scheduler)

Behaviour i | Non-functional !
(functional model) . model :

....................

wa1sAs
Buipunoiing

Estimated values

Information pre -
processing

Trace generation

Trace file
generator

Figure2-7: Augmented code estimation

Figure2-7 shows how the three parts mentioned above collaborate during simulation. It shows a more
generic approach, which is also suitable for software tasks, running on a processor.

If multiple behaviours are mapped to the same execution unit (e.g., multiple tasks running on the same
processor) some kind of scheduler, or even a more powerfdlimealboperation system (RTOS) is
required. In this case, each task is augmented as mentioned abovero@éssipg unit is still
represented using a single Amctional model. The soalledrunnablecontains the functional model

of the task, as well as the numctional model of the HW. It also provides the interface, that can be
used by the overall powenanager to set the power modes of the HW component, executing the
behaviour. The runnable is wrapped by the TLM2 templatéch enables communication with the
surrounding system.

Pagel6

COMPLEXSNP#&R/D1.4.2/11 Public
Framework for platform based desigpace exploration

2.3.5 Virtual System Generator

HW SW system(C
IP'models’

3 8 &

[\irtual System Generator]

$-

N \/

SYSTEMC

Figure2-8: Virtual system generation flow

In this step in the flow the Virtual platform is generated according to the architecture model and the
task/communication mapping. The goal is to generateefficient simulation modethat can be
executed in the simulation step (sBection2.4) in order to provide with the simulation trace
information for the design space exploration tools.

The Virtual System Generator generates all the platform skeletons that are needed to integrate the
annotatednodels for hardware, software and IP into one executable virtual platform. It is capable of
generating skeleton models and of synthesizing intesféor different flavours of virtual platforms

and their level of abstraction. These include communication interfaces for using the annotated
software model in a platform with an IS&ymmunication interfaces and skeletons for assembling a
SNPS virtual plHorm running software tasks on designated VPUSs, sitdetons for assembling a

TLM platform for a host based simulatiom case of RTL legacy IP blocks, an Ri&-TLM
abstraction process is performed to generate the corresponding component of theirtagjet
platform.

Pagel7

COMPLEXSNP#&R/D1.4.2/11 Public
Framework for platform based desigpace exploration

T Parallel Application Description sequential C/C++ code Architecture/Platform Description
©
(@] T0 Port Interface ISA, pipeline, cache
= Sﬁ(hf?;;our, Q dedicated HW max.
E voltage & freq. scaling s area
> @
3 Mapping Description
] Behaviour (with Active Task) TO ->CPUO
Behaviour (with Passive Task) T2 ->HWO
..a_'a) executable specification
g
widths
/ CPUO Virtual System Prototype 0SCI TLM 2
Communication . communication
Graph of TO only model:
showing explicit Apv
communication ABA
o nodes. o ABCA_
ke Computation nodes .38 Contains bus power
o contain power and gg & timing model.
s timing annotations. 2 e
Instruction & data ~ o —
S fetches are handled =@ }| Communication
= by Cache Model. Ps graph of T1. Shows
@ parallel execution
= = obtained from
behavioural
synthesis. Power
"""" and execution time
System memory n pemony annotated in
model from IP-XACT Memory computation nodes.
repository. Model
____________________ A
k : executable specification 1
L | 9 in SystemC (e.g. on CoWare Platform))
E TLM initiator socket E TLM target socket s b J

Figure2-9: Model mapping
2.3.6 Global resource manager (Pre-optimized Power Controll er)

c pre-optimized bus cycle accurate

2 Global Resourc SystemC model |
g Manager Management | yjith self-simulating

g HW Interface .

£ (SW task) power & timing models

0

-———————————————*

Figure2-10: Power management (GRM)

The preoptimizedpower controller consists of two main parts.

a) The first main part contains one power controller per HW component (see S2&idn
which allows s#ing of the HW component, implementing the task into individual power
modes, and providing an interface to the Global Resource Manager (GRM) of the overall
system.

b) The second main part is the GRM, optimizing the system parameters at run time, i.egadaptin
the hardware platform and the application configuration during execution in order to further
reduce the power consumption. The GRM acts as a middleware between the application and
the platform. Among other functionalities, the GRM can vary the frequeh@rocessors,
power on and off power islands, select power modes of HW components, or switch between
different qualities of service proposed by the application.

The Global Resource Manager (GRId)oaded on the host processor of the platform. It is avacd
task running in parallel with the applicationfi€Tgoals of th6RM are as follows:

Pagel8

COMPLEXSNP#&R/D1.4.2/11 Public
Framework for platform based desigpace exploration

First, this GRM should supporthelistic view of resources and quality management his is needed

for global resource allocationdecisions, arbitrating between m@hlications, and optimizing a
utilityfunction (also called Quality of user Experience (QOE)), given theavailable resources. This
QoEallows tradeff, negotiated with the user, between quality and cost.

Second, this GRM shouldansparently optimize the resurce usage and the application mapping on
the platform. This is needed to facilitate the application development and manage the quality
requirements without rewriting the applications.

Third, this GRM shoulddynamically adapt to changing context. This 1seeded to achieve a high
efficiency under changing environment.

Since such a BM is intendedfor embedded platforms, Bghtweightimplementation only is
acceptable. To that endhis GRM should be considered in the system simulati@atatrol its
complexity and monitor itsoverhead, suctpasormance and power consumption.

2.3.7 Summary: Model Estimation and Generation Flow

Architecture/Platform Description

width, protocol

dedicated HW max.
area

sequential _ Parallel Application Description seq.
CIC++ AR Nt e S CIC++/SystemC
™ Tt with or without

wait()

ISA, pipeline,
F;rc'mcu' cache behaviour,
2 gments Behaviour clk freq.
Library e voltage & freq.

{ executable specification / scaling

] in SystemC

SPIRIT/IP-XACT Arbiter scheduling policy
technology

Mapping Description
MO - > CPUO

M1 - >HWO0
M2 - >HWO0

untimed/causal

simulation trace Platform
(data) [Vendor
»|C/C++ Front-End XY
Elaborator ;
block testbench|« L o
internal e
- TB generator design L
representation I—
seq. C-Code int. rep. (@)
eg. eg i
behaviour(M1) | to C writer <
behaviour(M2) Int. rep. | ><
ChipVision SW execution to virtual system DI_
PowerOpt time L —— | OsCITLM2 =
o communication
L v model:
Virtual System Descriptiol Apv
Sl htertsy s addrbsls ABA
Sy J SystemCo| Wi th ABCA
instrumentation . k .
(exec. time, ST dedicated HW
stat. & dyn. power, (EEs, i) m m

executable
O specification 1
in SystemC (e.g. on CoWare Platform)

cycle accurate
simulation trace
(data, time,
stat. & dyn. power)
I —

4

Figure2-11: Model estimation and generation overview

Pagel9

COMPLEXSNP#R/D1.4.

2/11

Public

Framework for platform based desigpace exploration

2.4 Simulation

In this step a detailed evaluation of the HW/SW platform,obtained by the previous part of the flow, is
obtained through a simulation of. Considering the possibility to adopt the COMPLEX flow for the
design of a node into a distributed environment the gb#iis step is not only to take care of Bus
Cycle Accurate SystemC/BAC++ Models of the platform in a closed environmerdsdnof
networked embedded systenikis step includes also the evaluation of distributed environments
through a network simulatigeerformed in SystemC

analysis tool

)

— ' o

bus cycle accurate

SystemC

model

with self-simulating
power & timing models

2.5 Exploration and Optimization

1 f

simulation
| trace

Figure2-12: Simulation of the virtual prototype

e design space
paramet

» hardware/software
partitioning/separa
optimizations

configuration
s memary

(static & dynamic)

constraints

+ functional reimplementation

+ runtime management
+ embedded softwarefcompiler

+ |F platform selection &

configuration/management

+ custom hardware synthesis

------- 1
instance F

ers

tion

design space definition

parameters for
new design space
instance

user ! op
1
'
1

visualzation/f
reporting
tool

trace

1exploration &

analysis tool

timization
tool

power/performance

T

simulatio
trace

-

Figure2-13: Exploration

/ optimization flov

DSE is acentral phase in dagi of novel computing
platforms In fact, for a given system specification
there may be many different design alternatives that
need to be evaluated and judged to understand their
guality and to take a decision on which is the system
aternative to implement.Design alternatives may
consist of tuning and allocating hardware components,
different mappings of software tasks to resources,
different scheduling policies implemented on shared
resources, functional modifications, memory
assignment, as well as lower level design parameters
such as clock frequency or bus/network width.

DSE involves the analysis of multiple criteria, since
each design alternative usually represents a -wéde
among different optimization goals. For instance, if we
consider high performance processors, usually they are
more expensive in terms of area and power
consumptiorthanlow performance processors. So far,
most design optimization methodologigsst regard
one single cost aspect, e.g., eneryy speed or
memoy footprint. However, the side effect of
optimizing one cost aspect is often that the others
become worse, by an unpredictable quantity

The Design Space Exploration (DSE) step is the part
of the design flow capable to create a feedback loop
between perfanance estimation and parameters
configurations of the target system. In the COMPLEX
flow, the DSE loop can interact at different level on a

different set of parameters.

Page20

COMPLEXSNP#&R/D1.4.2/11 Public
Framework for platform based desigpace exploration

At MDA design entry and Executable Specification levels, the exploration loop cagy agploring
the design space in terms of:

9 Functional Reimplementation
1 Mapping of HW/SW tasks

1 IP Selection and Configurations
1 Memory Configurations

On the other side at the Estimation and Model Generation level, the explorable parameters range
within the fdlowing list:

1 IP Configuration
Memory Configuration
Custom Hardware Synthesis constraints

Selection of Embedded SW optimization

= =4 -4 =2

RuntimeManagement strategies

251 Simulation Trace s and Analysis

In this part of the flowthe activity- and powetrelevant data ofhte different platform partare
extracted. Which are theore-procesedto be eithergraphically presented to the desigheyugh a
visualization reporting toolor to be used by automatic exploration amgtimization toolThe
visualization engine takepower and activitydata prepared by the analysis tomhd presemsthis
information to the designer.

252 Design Space Exploration

The Design Space Exploration (DSE) step is the part of the desigriiibareates a feedback loop
between performance estimation and parameters configurations of the target system. Starting from the
definition of the design space, the DSE step iteratively generates an instance of the design space to be
given as input to the model geatton phase. The simulation phase uses the generated model to
estimate the performance values, and to give feedback to the DSE step for the generation of the next
design space instance.

It is a step in the flow that is needed for surfing the design spheading the system parameters) in

order to find the optimal system configurations among all the possible alternatives that are part of the
design space. Moreover, the design space exploration loop is also used to determine some knowledge
about the systerparameters (such as the main effects, interaction effects) and design space (such as,
configuration distribution with respect to the system performance). This phase can be done by using a
usercontrolledDSE or an automatic DS&nvironment

a) Intheautomatt design space exploration and optimization thete isautomagd interacton
with system models in order to avoid intervention of the designee the target problem is
formally defined(except for the analysis of the results).

b) Theuseof a user centridSE flow is possible to allowa detailed analysis of the system
behaviour (e.g. trace analysis or time behaviour), once the problem cannot be formally defined
or it is not easy to be defined, or when the automatic modification of the parameters on the
sygem model is not possible or requires a larger modelling effort.

Page?21

COMPLEXSNP#&R/D1.4.2/11 Public
Framework for platform based desigpace exploration

Summarizing,On the one hand the user can constrain the overall platform selection, deduce further
constrains orHW/SW separation, or identify powaonsuming implementations and replacenthe

with powerefficient ones. On the other hand, the automatic exploration and optimization tool is based
on multiobjective optimization heuttigs to efficiently navigatea parametric version of theerall

design space definddrmally.

253 DSE-XML Interface

The interaction between user agents and the exploration framework is shown in the following figure:

' Use Case
and Simulator
) Provider
XML
«— | Design | «=—
Space
Exploration /—lﬁ
Architect .
e Design Space XML
Human]
Computer EXploratlon — [System | — R
Interaction TOO' Canig, Use
Case
—
XML
«—— | System | «=——)
Metrics (__Simulator)
.)

Figure2-14: Design space exploration flow

Essentially, two kinds of user agents are assumed to inteithdhe exploration framework:

AUse case and simulator providerThis is the provider of the use case and its associated simulator.
He is responsible of releasing the combined package of the system simulation model (or an automatic
flow to generate it) ahthe target application running on it.

A Exploration architect. This is the user architect who is responsible of identifying the optimal
configuration of the architecture underlying the use case.

A use case is defined as the combination of the targbkitesture and the application running on it.

The simulator is the executable model of the use case and it is a single executable file (binary or
script), which interacts with the design space exploration tool to provide the value of the estimated
metrics,given an input configuration. In literature, the simulator is also referred to as the solver.

We define the interface between the Design Space Exploration Tool and the exploration architect as
the humarcomputerinteraction interfaceThis interface can b&UI (Graphical User Interfacdjased

or commaneine-based and it is used for specifying and solving the exploration problem in terms
optimization metrics and constraints.

The goal of the DSEXML interface is to addresses the interaction between thelaionuand the
design space exploration tools, which is essentially an automatic prooganegram interaction. In
general, the interaction can be described as following:

1 The design space exploration tool generates one feasible system configuration ygtese s
metrics should be estimated by the simulator.

1 The simulator generates a set of system metrics to be passed back to the design space exploration
tool.

The specification of the formats of the input/output data to/from the simulator is defined as the
explorer/simulator interface.

Page22

COMPLEXSNP#&R/D1.4.2/11 Public
Framework for platform based desigpace exploration

In order to link the use case and the simulator to the design space exploration tool, a design space
definition file should be released by the use case and simulator provider together with the executable
model of the use caseirfailator). This file describes the set of configurable parameters of the
simulator, their value range and the set of evaluation metrics that can be estimated by the simulator.
This file describes also how to invoke the simulator as well as an optiortdlrsdgs with which the
generated parameter values should be compliant. The rules are only used by the exploration tool in
order to do not generate invalid or unfeasible solutions during the automated exploration process.

The DSEXML specification[18] provides an XML based grammar for writing both the design space
definition file and the simulator interface files.

Page23

COMPLEXSNP#&R/D1.4.2/11 Public
Framework for platform based desigpace exploration

3 Application and platform definition and generation

3.1 Overview

The generation of a virtual system takes various steps. Several steps in the virtual system generation
are interchangeable. Other steps might involve the integration of different tools or not. Some steps
might be automated or not. Thefmition of all these aspects depends on the selection for the initial
input description, on the target platform which is aimed at, and on the performance estimation tools
and techniques involved. Of course, such a configuration heavily depends on miveosé the
generated virtual platform.

The COMPLEX flow enables the integration of different frentds, which enable different ways to
capture the model, and different simulation and performance estimation technologies, to play with the
tradeoff between simulation speed and accuracy enabled by the generated virtual system. For
instance, an executable model written in SystemC could already exist, written by the user, or it might
need to be generated from MARTE/UML or, for example, the virtual platfamuse a praynthesis

or a postsynthesis estimation technique.

This document explains how the COMPLEX tooling involved in the generation of a Sybiesed

virtual system is integrated. The document explains the mains aspects of the integration veadch app
when traversing the global view of the virtual system generation, according to the general complex
flow.

UML/MARTE & Simulink model

HW/SW task separation & testbench
generation

¥
$ ©

[Virtual System Generator with TLM2 Interface Synthesis
™\
Executable and Confi
BUIEBIE M T enC
Performance System Model
J

Figure3-1: Generic view of system generation fr@mtd, task separation and interface synthesis.

Such global view is shown iRigure3-1, which is a simplified excerpt of the COMPLEX Framework,
shown in Figure 5 of the DoWFigure 3-1 shows that the generation of the virtual system has to take

Page?24

COMPLEXSNP#&R/D1.4.2/11 Public
Framework for platform based desigpace exploration

into account main aspects, such as the feoat, the task separation, the instrumentation of the source
code for SW and HW performea analysis, and the TLM2 interface synthesis.

Figure 3-1 shows the minimum set of prequisites for the generation of a virtual system in the
COMPLEX framework. A fist prerequisite regards the input freend: at least a SystemC executable
specification should be available. Moreover, COMPLEX framework enables the possibility of a
higherlevel input from UML/MARTE and Stateflow models, which, in a latter term, cactobeerted

into a SystemC executablk.SystemC TLM specification can be also generated from legacy RTL IP
blocks through abstractioBecond, the specification code that should be implemented either in HW or
SW has to be separated from the executableembdsed on mapping information. Mapping
information can be either provided by the user or automatically automated from tHeJglgimput.

Third, the separated HW and SW blocks must have been processed by the corresponding estimation
tools, generatingiistrumented versions of the executable models. Fourth, for those parts of the system
which are not obtained from the task separation, appropriate (TLM2) IP models must be available.

When the preconditions listed above are satisfied, the building blocks for the virtual system are
available. In order to combine those building blocks to form a virtual system, the system generation
must perform several operations. First, it must gatheritiput blocks for the system, i.e. the
instrumented models that stem from the estimation of the ategatasks and thértual platform IP
models Second, TLM interfaces must be synthesised to create wrappers for the instrumented
components. Theserappers allow an integration of the varying components into a TLM 2.0
environment. Third, the TLM 2.0 wrappers for the HW/SW components must be interconnected with
the IP models.

The result of the system generation is an executable virtual SystemC gleseription with all
instrumented components interconnected via TLM 2.0 interfaces. This system description can be
further refined and mapped to specific virtual platforms by correspondingemaiskFor instance, in

the specific flow applied in use caseoiwwo backends will be exerted in order to map the virtual
system to two distinct refined virtual platforms. The first target platform is the SNPS virtual platform.
Extended SNPS platform models will need to be instantiated to compose the systemtéogéhis

The second target platform is the-Splatform. In order to map to this target platform, the RelSC
microprocessor running FreeRTOS and the peripherals associated to this architecture must be
emplaced.

How these integration aspects (framd andbackend, task separation, integration of IP blocks,
virtual system generation) are solved in different ways, they might be encrusted in a single tool or
spread among different ones. Specificaligure 3-2 and Figure 3-3 sketch the integration solutions
covered in COMPLEX, relying in use case 2 and 3 flows.

Figure3-2 sketches the flow for the generation of the Hizded simulation used in use case 2. In this
case, the generation of an augmented virtual system is directly fed with a Systecn@lele model
(see Sectior.4 for details). Furthermore, mapping information for task separation and a platform
definition for mapping to a target platform isoprded. In case the executable model is specified by
the user like in use case 2, the mapping information and the platform definition is added manually.

In this generation flow, the SMOG tool (sectiBr2.5 is in charge of task separation and virtual
generation tasks, including the synthesis of the TLM interfaces that are needed to interconnect the
system components, and specifically the TLM2 IP components. SWAT{s&ion3.2.7) is in charge

of SW estimation, while HW estimation is performed through PowerQgection3.2.6§. Therefore

this integration enables a performance simulation based on native simulation of software and post
synthesis custom HW estimation.

Page25

COMPLEXSNP#&R/D1.4.2/11 Public
Framework for platform based desigpace exploration

Sy HW/SW
mapping

executable
model

Task Separation

PowerOpt+

SystemC
IP models

Virtual System Generator

RouterIP

Figure3-2: Systenmgeneration fronend, task separation and interface synthesis in the use case 2.

Figure 3-3 shows how the integration is solved in the use case 3. In this casefiaasigpart of the
integration aspects are encrusted in the SCoPE+ framework.

UML/MARTE model

Eclipse

Platform
c/c++ > PIM or :.:VISI\:' Description Complex
Simulink Pping Model plugin

Architecture
Platform
(IP-XACT)

- Platform
-Design Space

e—————

SystemC
Platform CFAMCM plugin XML and IP-XACT
Indeppendent plugins
model (PI;M) .
Task Separation
SCoPE+

HL Custom SystemC
HW Sim. IP models
Library

SCoPE SW estim.
kernel

Virtual System Generator

¥

Executable and Configurable
Performance System Model m c

Figure3-3: System generation fro®ind, task separation and interface synthesis in the use case 3.

Page26

COMPLEXSNP#&R/D1.4.2/11 Public
Framework for platform based desigpace exploration

Figure 3-3 sketches the integration designed and developed for use case 3, in order to enable a
(Eclipsebased) graphical frorend which enables the user both, the UML/MARTE capture of the
model (reported in D2.1.1), and an automatic generation of the virtual system. The same graphical
front-end provides a set of generators (violet arrows) (reported in D2.1.2), which automate the
extraction of a set of files. These files contain the informatibthe UML/MARTE model required

for the generation of the executable virtual system in convenient text formats, which are readable by
the SCoPE+ framework (after the installation of some specific plugins for enabling the CFACM, the
XML and the IP/XACT fontends). Specifically, the CFACM front end enables to feed SCoPE+ with

a platform independent model (PIM) which captures the system functionality encapsulated within
components (see D2.1.1). CFAMCM code is extracted from the UML/MARTE model through the
Marte2cfam generator (see D2.1.2). The CFACM code has a direct translation into SystemC, which,
after integration with the SystemC stimuli, enables the generation of a SystemC Platform Independent
model, shown on the left hand sideFdfure 3-3. This SystemC PIM enables a direct link (shown as
black arrow on the left hand side [Bigure 3-3) which could feed other alternatives for the generation

of the virtual system, as the one showFigure 3-2. Notice that this SystemC PIM is different from

the SystemC executable shown at the bottorfigéire 3-3, which represents the platform specific
model after taking into account the platform model and the architectural mapping. This model is then a
performance executable model which can providst festimations of time, power and other
performance metrics, and thus which can be employed by the exploration tool.

For the generation of such performance model, in the virtual system generation froguief3-3,
SCoPE+ is able to directly read CFAM code. Moreover, SCoPE+ has to read the architectural
mapping information enclosed in XML files automatically generated from the UML/MARTE model.
Similarly, the platforminformation, and moreover, information regarding the Design Space (which
parameters can be configured and in which rgng@utomatically produced in XML format from the
UML/MARTE model. Part of the information, specifically the HW platform architectaa be
handled under the RACT format. A seamless connection is ensured by the Marte2IPXACT
generator, and the JRACT plugin which enables SCoPE+ to read such format. The black arrow on
the right hand side dfigure3-3 shows how the IP/XACT output can serve to feed other flows for the
generation of a virtual system, e.g. a virtual system based on the SNPS tool virtual platform creator.
More information about the de generators is reported in D2.1.2. The XML ancKARCT front-end

plugins were available in previous versions of SCoPE and they have been refined just for COMPLEX.

Like in Figure3-2, where SMOG is in charge of SW/HW separation and virtual system, generation, in
the Figure 3-3, SCoPE+ framework solves these aspects of the integratloreover, SCoPE+
embeds the elements for instrumentation of the code for SW performance estimation. Moreover,
SCoPE+ integrates the framework reported in D2.4.2, forlleigd performance estimation of custom
hardware implementation of functionalifjhis way, the virtual system generated under the scheme of
Figure 3-3 enables a fast performance estimation alternative, based on native simulation-and pre
synthesisdchniques for the HW parts of the system. In a similar way Bijiure 3-2, theFigure 3-3
integration enables the integration of TLM2 SystemC IPs, since SCoPE+ builds internally a TLM2
platform which admits the integration of user models at the platform level. Moreover, thatiotegr

can be done from upper levels, provided that XML (oiXIRCT) wrappers are provided for the
SystemC IPs.

Following sections provide an insight on how all these aspects, generically introdUeigdra3-1,
are solved in COMPLEX for the variety of technologies and tool involved, as showigimne 3-2
andFigure3-3.

Page27

COMPLEXSNP#&R/D1.4.2/11 Public
Framework for platform based desigpace exploration

3.2 Tools summary

3.21 UML/MARTE TC

COMPLEX Eclipse Application (CEA) is the direct result of task 2.1. This application has been
developed over the Eclipse Helios framework, mairding open standards (Model2TextLanguage,
JAVA) for the implementation of the transformation engines.

It is aimed to create a modelling environment that, starting from UML/MARTE models, enables the
user to simulate and explore different implementationrredtéeves with minimal effort. For such
purpose, the infrastructure generate intermediate files that have been adapted to be compliant with the
XML inputs defined by the SCoPE+ simulator and MOST design space explorer. As a result, the
COMPLEX Eclipse Appliation tool allows the user to:

1 Model the embedded system at both application and platform levels in different model views.
T Generate the CFAM and SystemC executable models.
1 And finally, execute the Design Space Exploration loop.

In order to achieve thes®gs, the application has been developed as an Eclipsénplhgt can be
installed as a single package. However, it internally contains the set of elements required both for
modeling and code generation. The application integrates an infrastructurgingrisithe following
elements:

1 UML Profiles: MARTE and COMPLEX specific profiles.

1 A set of analysis tools that help the user during the system modelling by checking the validity
of the model.

1 A set of generators developed to obtain from the UML/MARTE modelbaséed
representations suitable for the production of the SystemC executables for validation,
performance estimation and DSE exploration

1 A graphical interface (GUI), simplifying the uséall the previous elements, and providing
set of options for triggering DSE activities.

The generators enable the user to independently trigger each of the different code generators from the
UML/MARTE model. The CFAM generator is implemented by t@®MPLEX MARTE2CFAM

plug-in integrated in the COMPLEX Eclipse Application. It consists of an Eclipse-iplubat
transforms the UML/MARTE model into the CFAM skeletons and a set of functional code containers
(written in C++) that abstracts the functional codmnf the execution platform. This generated code

will be the input for the SCoPE+ tool, which is in charge of performing thelbigh estimation of

the system.

A XML code generator calleMARTE2SCoPEhas been developed and integrated in the COMPLEX
plug-in for direct connection with SCoPE+ and MOSTie COMPLEX MARTE2SCoPE generatsr

a tool ale to automatically produce XMlfilesfromUML modek created under the COMPLEX
UML/MARTE methodology. MARSCOPE is structured into two generators: Marte2xmlSD and
Marte2xmIDS. MARSCOPE generates at least two files. Marte2xmISD produces at least one XML file
with the system description in the shape of one XML file which contains the architecture of the system
platform including, HW and SW components; the HW architectamel the allocation of application
components into platform components. Marte2xmIDS generates at least a second XML file which
describes the exploration space, that is, the design space exploration (DSE) parameters that enable the
system design exploratioAdditionally, the generator can produce the design exploration rules, which
constraint all the possible design alternatives to be covered by the exploration tool, in XML format.

Page28

COMPLEXSNP#&R/D1.4.2/11 Public
Framework for platform based desigpace exploration

The XML code generated serves as input for the SCoPE+ tool in orderuiatsgirand evaluate each
configuration of the design of the system to be implemented.

Another generator calleMARTE2Stimuli, enables the extraction of a set of SystemC test benches,
reflecting the different scenarios which involve the system and itsoemvént in different test cases.
The MARTE2Stimuli generator is implemented by thé OMPLEX MARTE2Stimuli plugin
integrated in the COMPLEX Eclipse Application.

A part from the tool flow developed for simulation and exploration, the tool has been extended
support an alternative flow based onrX{RCT. For such purpose, an-lRACT plug-in capable of
generating IPXACT files from the UML/MARTE models has been developed and integrated in the
tool. Since it represents a different tool flow, it is presentia.la

The graphical user interface (GUI) is mainly based on user menusippamenus over UML models
and messages windows that interact with the user during the different operations.The following image
depicts the Eclipse interface including the CEA totdiface.

& Papyrus - ProducerConsumer/model.di - Eclipse Platform
Fie Edt Diagram [SdeeliEia:

Window Help

E'*'E - %E - - Analyze model .
] Generate L4

Stark DSE
B Model Explare | [' = B ||~® *model.di 53

v Configure
=
About
+-l=F newProject + producer:

+-T=F newProject?

H-1zf = ProducerConsumer 459 [https: [fsavana, gy, G]

Figure3-4: COMPLEX menu

As it is shown irFigure3-4: COMPLEX menu
, the COMPLEX mengnables several options:

1 To analyze the model: The MARTE model analysis is intended to early detect inconsistencies
in the model that could lead to errors in the generated code or problems during the code
generation process.|f the analysis reymrors, he Eclipseiproblems view shows a message
indicating the type of problem.

1 To trigger any of the different generatordMARTE2CFAM, MARTE2SCOoPE,
MARTE2Stimuli, MARTEIPXACT.

1 To trigger the Design Exploration tools: Generation of the scripts that wrapgebgeaition of
the MOST, SCoPE+ and COMPLEX Model Checker (CMC) tools. The CMC verifies the
preservation of the nefunctional properties during the simulation.

1 To configure the COMPLEX framewaosfor instance, specifying the time of simulation, the
system metrics to be obtained during the design process (latency, power consumption)

defining the constraint of t hijldbrariesy @mplen met r i
options, |ibrarieste

1 To give information about the authoring

Page?29

COMPLEXSNP#&R/D1.4.2/11 Public
Framework for platform based desigpace exploration

The CEA tool has been made #able in the COMPLEX Eclipse update site:

http://offis.complex.de/eclipseupd/release/

which, in turn, is placed in the COMPLEX website.

3.2.2 HIFSuite/Stateflow

The code generation from Stateflal@scriptions is based on the HIFSuite tool. HIFSuite is based on
an intermediate language, namely the Heterogeneous Intermediate Format (HIF) and a setral front
and backend tools to map other languages to and from HIF.

Internally to HIFSuite, the coectness of generated code is guaranteed by implementing a formal
model of computation, named UNIVER(QR0]. The subsequent design flow, incorporating the
HIFSuite,is reported irFigure3- and it is composed by the following steps:

1) Translation of input MDL description into HIF/UNIVERCM by using a fremd translator,
namely sfhif. This is the most critical phase, since it requires a semantic mapping between
Stateflow models and UNIVERCM models.

2) Translation of HIF/ UNIVERCM description into SystemC or C++, by using a single- back
end translator, namely hif2cpp. During this phdke,back end translator calls an algorithm,
implemented by using the visitor design pattern, to refine the HIF description into either
SystemC or C++ description.

Output
description
(C++)

\/_

Intermediate
description
(HIF+
univerCM)

Input
description | [}
(MDL)

Back-end Output
description

Front-end

translator
(hif2cpp) (SystemC)

\/

translator
(sf2hif)

. Output
HiIF-based translation flow description

(SCNSL)

\/—

Figure3-6: TheSystemC/C++ code generation flow, exploiting HIF/univerfGivhat..

To better clarify the Stateflowo-UNIVERCM mapping issues, the main features of UNIVERCM are
here reported.

UNIVERCM is a computational model which allows representing heterogeneous systems as Finite
State Automata (FSA). For example, it allot@smodel in uniform way software, digital hardware,

and continuous components like analogue hardware or the environment. UNIVERCM allows discrete
evolution on transitions, while continuous is represented by differential equations computed into
states. UNNERCM supports priorities between states and transitions, in order to represent more
concisely complex behaviours. Some important features are:

Page30

http://offis.complex.de/eclipseupd/release/

COMPLEXSNP#&R/D1.4.2/11 Public
Framework for platform based desigpace exploration

1 Variables: can be of discrete, continuous or wire type. In this work, only discrete variables
have been used.

1 Labels: are conceptually similar to events, since they do not have any associated value. They
can be used to synchronize parallel automata.

I Transitions: can have guard to allow they crossing, and actions. Guards can involve both
labels (enabling labels) andnables (enabling conditions). Actions can involve both label
generation (updating labels) and variable assignments (updating variables).

1 Automaton: different automata are always considered to evolving in parallel. Thus, eventual
synchronization must bexglicitly represented (e.g. by using variables and labels). Automata
can be used to represent a variety of different components, like SW threads, SW processes,
HDL processes and functions.

Conversely to many other computational models, UNIVERCM has nat thesigned for toplown

design methodologies, like Model Based Design. Instead, it is focused on Jopttdesign flows.
Therefore, it can be used as a unifying model for different languages. For example, reuse of IPs
written in different HDLs can be imgiented by mapping corresponding languages to univerCM, and
then mapping the UNIVERCM representation to the preferred output HDL

3.2.3 HIFSuite/A2T

HIFSuite is a set of tools and file formats for Automatic HDL Conversion and Abstraction. This
means that with HISuite you can translate RTL modules from VHDL or Verilog to SystemC 2.0,
either RTL or TLM. If the conversion into TLM is chosen it is called abstra¢ti®h

Thetools are C++ applications that can be run and configured directly from the command line and
they are available both for Linux and for Windows.

The following figure shows the diagram of the elaboration flow, starting from the original RTL
module modeled wh VHDL or Verilog, ending with the converted SystemC module. In the middle is

the HIF Format used to create a local representation of the design independent from the original
description language. At this stage the module can be manipulated using thARTaaad then
converted into SystemC. This manipulation strategy is used by the Automatic Abstraction Tool and by
the Hierarchy Remover tool to create the TLM counterpart of a design and it can be used by designers
to create custom manipulation tools.

Page31

COMPLEXSNP#&R/D1.4.2/11 Public
Framework for platform based desigpace exploration

2
Original RTL HR AT Converted
Diesign Hierarchy Automatic SystemC Design
Remawver Abstraction Toaol
Vo g 0
Core APl TLM Design
I S P
HIF

: Parsars | | Generators :

i L FORMAT ™ '

[

I
I -

VHDL Systemn(C
RTL Design . RTL Diesign

Figure3-7: HIFSuite conversion and abstraction flow.

The Parsing tools are used to build the internal representation of the original moduleE¢repnt
while the Generator tools are used to create final version of the module-EBdikAt least One
Parser or one Generator for each language supported by HIFSuite must exist.

The A2T is responsible to apply the transformation to the design according to the SystemC TLM 2.0

specificationslhe Hierarchy Remover is a utility tool that allowdlaiten the hierarchy in the design.

It is useful to remove the module's internal hierarchy when only the interfaces are relevant in the final

design. This is the case of the abstraction, which is used to get a new module that is equivalent in
terms of behvior and not in terms of structure.

Once the original module is imported and converted into its equivalent HIF representation, the
designer may apply any kind of change and transformation using the Core API. The Core APl is a set
of C++ functions that wdr on the internal representation of the module. . The HIF (HIF stands for
Heterogeneous Interchange Format) is a structured format suitable to represent hierarchical designs. It
can be dumped to file as XML when a readable format is required.

The processhiat abstracts an RTL description towards a TLM description relies on a formal model
that allows us to represent designs at different abstraction levels. Among different alternatives, we
select the extended finite state machine (EFSM). Given an EFSM dRThelP, the proposed
abstraction technique is composed of the following main steps:

1) Identification of computational phases An EFSM can be subdivided in three different kinds
of subgraphs composing the behavior of the RTL IP. They are: input subgndygre the IP
gets data from the primary inputs, elaboration subgraphs, where the IP computation is carried
out, and output subgraphs, where the computation result is put to the primary outputs. Paths
inside such subgraphs represent different computativeses of the design. Subgraphs and
computational phases are identified and used in the subsequent steps of the methodology for
generating the TLM functionality and communication interface.

2) Generation of the TLM functionality. States composing each elahiion subgraph are
merged into a single macro state. We obtain a macro state per elaboration subgraph by
applying appropriate merging rules.

3) Generation of the TLM communication protocol. The communication protocol of the TLM
IP is generated by implemengiran interface compliant with the OSCI TERIO standard
library, to guarantee the generated model interoperability and reuse. Moreover, an opportune

Page32

COMPLEXSNP#&R/D1.4.2/11 Public
Framework for platform based desigpace exploration

TLM IP driver is implemented to allow the master to correctly interface to the TLM IP. The
communication mtocol and the driver are automatically implemented by analyzing the input
and output subgraphs of the RTL EFSM

3.24 IP-XACT TC

The IP/XACT tool chain consists in MARTE to IP/XACT generator. This generator reads the
COMPLEX UML/MARTE model and produces a XMLild description of the HW platform
architecture under the IP/XACT standard. Such IP/XACT description feeds the basic HW platform
information to the design flow after Design Space Exploration activity. In the COMPLEX use case 3,
it is put into practice bysing the automatically generated IP/XACT description for the generation of a
virtual platform through the Synopsys VP tool chain (sec8d8. The created VP serves as a
reference performance model for validating the design decision taken after the design exploration
loop, which relied on SCoPE+ for fast performance estimationC@MPLEX use case 3, the
generated IP/XACT description is read by Magillem tool chain, which in turn generates the input
scripts which serve as entry for the Synopsys VP tool chain. Details about how IP/XACT tool chain,
Magillem TC and Synopsys VP, ardégrated are reported [@2]D2.5.3fiFinal reportand toolson
virtual s y s.Thenext figerenshow she fiow without the IRACT TC

Name,
Type
Ports
Interfaces

!
— . W
H Script
’ -
’ Synopsys

Figure3-8: Flow without IRXACT TC

The next figure shows the flow using¥ACT TC:

Page33

COMPLEXSNP#&R/D1.4.2/11 Public
Framework for platform based desigpace exploration

Figure3-9: Flow using IRXACT TP

Detailed description about all steps defined in this flow can be fouB@.5.3 Final report and tools
on virtual system generatiaronfidential

Page34

