
Public

FP7-ICT -2009- 4 (247999) COMPLEX

COdesign and power Management in PLatform-

based design space EXploration

Project Duration 2009-12-01 ï 2013-03-31 Type IP

WP no. Deliverable no. Lead participant

WP1 D1.4.2 SNPS

Framework for platform based

design-space exploration

Prepared by Bart Vanth ournout (SNPS), Hector Posadas (UC),Raúl Valencia Pérez

(GMV), Philipp A. Hartmann, Kai Hylla (OFFIS), Emanuel Vaumorin

(MDS), Gianluca Palermo (POLIMI), Massimo Prando (POLITO) , Davide

Quaglia (EDALab), Eddy De Greef (IMEC)

Issued by OFFIS

Document Number/Rev. COMPLEX/ SNPS/R/D1.4.2/1.1

Classification COMPLEX Public

Submission Date 2013-05-03 [updated 2013-05-31]

Due Date 2012-12-31

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

© Copyright 2013 OFFIS e.V., STMicroelectronics srl., STMicroelectronics Beijing R&D Inc, Thales

Communications SA, GMV Aerospace and Defence SA, SNPS Belgium NV, EDALab srl, Magillem Design

Services SAS, Politecnico di Milano, Universidad de Cantabria, Politecnico di Torino, Interuniversitair Micro-

Electronica Centrum vzw, European Electronic Chips & Systems design Initiative.

 This document may be copied freely for use in the public domain. Sections of it may be copied provided

that acknowledgement is given of this original work. No responsibility is assumed by COMPLEX or its

members for any aplication or design, nor for any infringements of patents or rights of others which may result

from the use of this document.

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 2

History of Changes

ED. REV. DATE PAGES REASON FOR CHANGES

BVt 1.0 2013-05-02 75 Public version

PAH 1.1 2013-05-31 79 Updated with integration summary (Section 5)

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 3

Contents

1 Scope of this document .. 5

2 COMPLEX Design Flow ... 6
2.1 Introduction .. 6

MDA design entry .. 6
Executable Specification .. 7
Estimation & model generation .. 7

Simulation .. 8
Exploration & optimisation .. 8

2.2 MDA Design Entry .. 9
2.2.1 UML/MARTE Design Entry .. 10
2.2.2 Matlab/Stateflow Design Entry .. 12

2.3 Estimation and Model Generation .. 13
2.3.1 Task separation / Testbench generation ... 13

2.3.2 Source Analysis and Augmented Code Generation (SW tasks) 13
2.3.3 Source Analysis and Augmented Code Generation(HW tasks) 14
2.3.4 Block annotated C++ (BAC++) ... 15
2.3.5 Virtual System Generator ... 17

2.3.6 Global resource manager (Pre-optimized Power Controller) 18
2.3.7 Summary: Model Estimation and Generation Flow ... 19

2.4 Simulation .. 20
2.5 Exploration and Optimization .. 20

2.5.1 Simulation Traces and Analysis ... 21
2.5.2 Design Space Exploration .. 21

2.5.3 DSE-XML Interface ... 22
3 Application and platform definition and generation .. 24

3.1 Overview .. 24

3.2 Tools summary ... 28
3.2.1 UML/MARTE TC .. 28
3.2.2 HIFSuite/Stateflow ... 30

3.2.3 HIFSuite/A2T ... 31
3.2.4 IP-XACT TC .. 33

3.2.5 SMOG .. 35
3.2.6 PowerOpt .. 36

3.2.7 SWAT ... 37
3.2.8 Synopsys VP .. 39
3.2.9 SCNSL ... 40

3.2.10 MOST ... 41
3.2.11 MMCO/MEMOPT ... 44

3.2.12 IMEC-GRM ... 45
4 Design Space exploration Flow.. 47

4.1 USE CASE 1 ï Toolchain Description .. 48

4.1.1 Description of the use-case .. 48
4.1.2 Integration with the DSE Framework .. 50

4.2 USE CASE 2 ï Toolchain Description .. 52
4.2.1 Description of the use-case .. 52

4.2.2 Flow Coverage ... 53
Run-time ... 55

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 4

4.2.3 Integration with the DSE Framework .. 56
4.3 USE CASE 3 ï Toolchain Description .. 57

4.3.1 Description of the use-case .. 57
4.3.2 Flow coverage .. 59
4.3.3 Integration with the DSE Framework .. 62

5 Integration of the COMPLEX flow .. 74
6 Summary .. 78

7 References .. 79

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 5

1 Scope of this document

This deliverable is a public overview of the work done in work package WP1Requirements,

specification and integration to holistic design environment (Start: M1 - End: M40), with a specific

focus on the design space exploration aspects of the design flow.

This deliverable documents the COMPLEX design approach. It gives an overview of the holistic

platform based design space exploration flow with industrial and academic case-studies to cover the

entire flow.

The COMPLEX flow follows a platform based design approach where the functionality and

architecture view of the system are separated.

The first goal of this deliverable is to provide an overview ofthe COMPLEX design flow and to

describe main interfaces in the COMPLEX design flow which enable interoperability among all

involved partners. As described in the DoW these requirements are focused on:

ñApplicationò and stimuli description: Defines the functional view of the system including the

definition of the initial, functional and non-functional specification methodology using MARTE.

Matlab/Stateflow isalso required as an additional system modelling input incorporating dynamic

system behaviour.

Platform description: Defines the architectural view of the system. It includes the definition of the

MARTE HW resource modelling methodology supporting the specification of the execution platform.

From this initial architectural specification, the corresponding IP-XACT description will be generated.

Model generation and cost-function definition: Define the step needed for build the system model

starting from the application and platform description. Models generation and cost function definition

should take care of the design space exploration feedback loop that can be done automatically or

manually by the designer.

Tool interface identification: Identification of the required tool interfaces for a shared methodology for

granting the interoperability of the different EDA and the design process work-flow. The tool interface

identification should be done taking into account the specific needs of each COMPLEX use case

defined in D1.1.1 - Definition of requirements, industrial use-cases and evaluation strategy.

The document structure is mainly composed by three parts: The first-one describes the COMPLEX

design flow presenting each step in terms of goals and requirements (see Chapter 2), the second-one

presents an overview of the tools as they are used for application and platform definition and

generation (see Chapter 3), while the third-one gives a brief overview of the case studies done during

the project and how they cover the overall design flow (see Chapter 4).

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 6

2 COMPLEX Design Flow

2.1 Introduction

The overall COMPLEX Design Flow as defined in the Description of Work [1] is split into a variety

of different intermediate steps as depicted in Figure 2-1.

Figure 2-1: Complex Design Flow

MDA design entry

COMPLEX provides an MDA (Model Driven Architecture) design entry (a), using the MARTE UML

profile as well as the Stateflow and Simulink tools. The platform independent model (PIM) specifies

the application or behaviour model of the system. The use-case scenario of the PIM is defined using

UML or Matlab/Stateflow (b). The system specification model describes the system functionality and

synchronisation points through abstract communication channels (e.g., handshake) and defines some

kind of communication scheduling. The platform description model (PDM) (d) describes the

interconnection of allocated execution and memory resources. The user-constrained HW/SW

separation and mapping (c) describes the binding of the processes in the platform independent model

to execution units and memories of the PDM.

system

specification

in SystemC

system

input

stimuli

automatically

pre-optimized

power

controller

HW/SW task separation & testbench generation

source analysis

behavioral synthesis

functional, power,

& timing

model generation

source analysis

cross compilation

functional, power,

& timing

model generation

virtual system generator with

TLM2 interface synthesis

bus cycle accurate

SystemC model

with self-simulating

power & timing models

simulation

trace

B
A

C
+

+

B
A

C
+

+

H
W

ta
s
k
s

S
y
s
te

m
C

e f

h

i j

l

m n o

e
s
ti
m

a
ti
o

n
 &

 m
o

d
e

l
g

e
n
e

ra
ti
o

n
s
im

u
la

ti
o

n

e
x
p
lo

ra
ti
o

n
 &

 o
p

ti
m

iz
a

ti
o

n

S
W

ta
s
k
s

e
x
e
c
u

ta
b

le

s
p

e
c
if
ic

a
ti
o

n

visualization/

reporting

tool

trace

analysis tool

p
o

w
e

r/
p

e
rf

o
rm

a
n
c
e

m
e

tr
ic

s

user
exploration &

optimization

tool

p

q

r

sMARTE

PIM or

Matlab/

Simulink

user

constrained

HW/SW sep.

& mapping

MARTE

PDM
(Platform

Description

Model)

c

parameters for

new design space

instance

d
e

s
ig

n
 s

p
a

c
e
 d

e
fi
n
it
io

n

design space instance

parameters
t

a d

M
D

A

d
e

s
ig

n
 e

n
tr

y

Åfunctional reimplementation

Åhardware/software

partitioning/separation

Åruntime management

Åembedded software/compiler

optimizations

ÅIP platform selection &

configuration

Åmemory

configuration/management

(static & dynamic)

Åcustom hardware synthesis

constraints

use-cases

architecture/platform

description

(IP-XACT)

virtual platform

IP component

models

g

S
y
s
te

m
C

b

k

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 7

Executable Specification

As the PIM is a pure specification model, for functional evaluation it is either simulated directly using

the Mathworks tools, in order to analyse and optimise the network performance, or converted to an

executable SystemC model (e) for the detailed platform design. This model contains functional

descriptions of tasks that will run as user-defined hardware like ASICs, as software on a processor, or

are provided as IP-components from third-party vendors. The latter ones are required just for

functional simulation and are not being modified during the subsequent flow. In order to execute the

SystemC model specified in (e), it needs to be stimulated. The stimuli (f) might originate from user

interaction or communication with other components that are part of the environment. External system

stimuli are derived from the MARTE use-case specifications or from the environment model in

Stateflow/Simulink (b). The IP-XACT platform specification (g) consists of blocks (components) with

interconnected interfaces. Each bock represents an IP component that can be configured and

characterized by the use of meta-data annotations. IP-XACT allows different views on each IP

component. To enable high-speed TLM simulation, a view with associated SystemC and TLM-2.0

descriptions can be used. The IP component meta-data (area, delay, power, etc.) can be described by a

non-functional view. The IP-XACT description is generated from the MARTE PDM (d). From the IP-

XACT platform specification a structural top-level view of the platform architecture is assembled. It

consists of processing elements, dedicated hardware, memories, and interconnects. COMPLEX does

not use interconnected RTL components but virtual platform IP components. Their behaviour is

modelled in SystemC and their communication interfaces are OSCI TLM2 compliant. Consequently

all interconnection models used in COMPLEX are also TLM2 compatible.

Estimation & model generation

Step (h) collects all information from the executable specification phase, parses and

analyses/elaborates the SystemC specification model, reads the mapping information, and the IP-

XACT platform specification meta-data. All these information are written to an internal design

representation. From that internal representation the behaviour description of each component can be

extracted and forwarded to the domain specific analysis and synthesis tools. Behaviours mapped to

dedicated HW resources (HW tasks) are forwarded to existing source analysis and behavioural

synthesis tools (i). Behaviours mapped to SW resources, as general purpose processors or digital

signal processors, are forwarded to existing source analysis and cross compilation tools (j) .

Additionally test benches with activation traces and constraints for the behavioural synthesis and cross

compilation are forwarded to these third party tools. HW tasks which shall be implemented in custom

hardware enter block (i) together with typical input stimuli (input data and active/idle statistics) as

well as synthesis constraints (such as technology node, threshold voltage, available area, etc.). Each

task is then analysed and fully synthesised (scheduling, binding, allocation, implementation of power-

management methodology, controller generation, floor-planning, etc.) down to RT-level using third

party behavioural synthesis tools. Finally, code in BAC++ (Block Annotated C++) is generated. The

BAC++ is clustered, in such way that run-time or power variable control structures, as well as bus

requests are separated. Delay, static power, dynamic power, and variation information are

instrumented to the behavioural C++ code so that a power and delay aware simulation can be

performed via code execution. The SW task's code will be analysed and cross-compiled by existing

third party tools (j) . During analysis metrics like power consumption and worst-case execution time

are estimated and a model is generated from that data. Identically to the behavioural synthesis in (i)

code in BAC++ is generated by the cross-compiler back-end. Block (k) represents SystemC/TLM2

performance and power characterized platform IP components like HW accelerators, communication

resources (bus, point-to-point channel), and memories. The virtual system generator (l) reads the

BAC++ from (i) and (j) and takes the instantiated virtual IP component models from (k). The virtual

system generator assembles these different input blocks to an executable system model. Therefore, the

instrumented code coming form (i) and (j) needs to be connected to the remaining virtual platform IP

components, using the OSCI TLM2 API. The output of this generator is a complete performance and

power aware system model with up to basic block accuracy.

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 8

Simulation

The custom hardware, synthesized in (i) and parts of the virtual platform IP components, specified

in (k) provide dynamic power management (DPM) abilities. For the first iteration of the entire DSE,

an initial power controller (m) will be automatically generated, controlling each componentôs power

state based on the transition cost and the activity distribution. Afterwards, the DPM policies can be

modified by the user or automatically refined. The generated SystemC model (n) can be compiled and

directly executed on the host machine of the designer. The instrumented code (BAC++) allows writing

different simulation traces under employment of the specified system input stimuli (f) through use-

cases (b). The granularity of tracing information can be parameterized to the needs of the analysis and

exploration step. It is expected that full tracing will slow down the entire simulation dramatically,

which makes an appropriate choice of granularity extremely important. The tracing granularity can be

chosen for each component independently and can be refined hierarchically. This allows a more fine-

grained monitoring of certain interesting componentôs behaviour and a more coarse-grained

monitoring of other components.

In case of networked embedded systems, e.g., wireless sensor networks, COMPLEX will also address

the simulation of communications among embedded systems since this aspect is significant in the

assessment of the performance of the design solutions and therefore in the design-space exploration

and optimisation.

Exploration & optimisation

The simulation trace (o) contains timing, dynamic and static power information (with respect to

process variation) of each platform component, related to the executed workload as well as other

relevant metrics like memory usage. User-defined module, port, process, and function names from the

system specification (a, e) are preserved to ensure traceability to the input model of the executable

specification. Simulation traces of each platform part are read into an analysis tool (p). Main tasks of

this tool are extraction of activity- and power-relevant data of the different platform parts and to pre-

process these data to be either graphically presented to the designer (q) or to be used by automatic

exploration and optimization tool (r) . The visualization engine (q) will take power and activity-data

prepared by the analysis tool (p) and present this information to the designer. One possible

visualization type is a platform power-breakdown in which the power contribution of all platform parts

can be inspected. Platform evaluation and optimisation (r) is two-fold. On the one hand the user can

constrain the overall platform selection, deduce further constrains on HW/SW separation, or identify

power-consuming implementations and replace them with power-efficient ones. On the other hand, the

automatic exploration and optimization tool is based on multi-objective optimization heuristics to

efficiently navigate the overall design space defined in (t). Once obtained the design space definition,

the exploration tool starts an optimization loop interacting with the rest of the COMPLEX design flow

to find the optimal system configuration in terms of a user constrained target function. In the

optimization loop, the DSE framework generates a new design space instance (s) to be automatically

evaluated by the rest of the COMPLEX design flow, which returns the power and performance metrics

(scalar values format) from (p). All information gained from the platform analysis and optimization

phase will serve as input and feedback (s) to the next iteration of the platform refinement flow and

thus will lead to an optimized executable specification of the overall system.

To ensure a seamless interaction between these steps, a careful definition of specification formats,

model descriptions, and tool interfaces has to be defined. In this document, the continuous evolution of

the required definitions is documented as they are refined during the course of the COMPLEX project.

The following sections are organised according to the different phases of the COMPLEX Design

Flow. Every connection between different design/tool tasks in the flow is covered and the

corresponding requirements for the tool interfaces, model descriptions etc. are discussed.

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 9

2.2 MDA Design Entry

COMPLEX project supports two different model-driven capture mechanisms for modelling embedded

systems, the UML/MARTE design branch and the Matlab/Stateflow design branch. The selection of

the design branch depends of the project specific necessities and company choices. However,

UML/MARTE is more appropriate in the case of large projects and whenever there is a necessity of

performing design space exploration. The following depicts the two different design branches in

COMPLEX:

Figure 2-2: Model-Driven Architecture design entry

The UML/MARTE design entry for COMPLEX covers all activities of the COMPLEX design flow

depicted in picture Figure 2-1 related with the MDA entry and executable specification. Next figure

shows the different modelling activities and output artefacts derived from them

¶ Activities (a)and (e)(Figure 2-1), covered by UML/MARTE PIM modelling activity, which outputs

the MARTE PIM, CFAM model and the SystemC executable specification of the application.

¶ Activities (b)and (f)(Figure 2-1), covered by the UML/MARTE Stimuli Definition activity, which

produces the System Input Stimuli for the exercise of the SW and HW parts of the system.

¶ Activities (d)and (g) (Figure 2-1), covered by the UML/MARTE PDM modelling activity, which

outputs the MARTE PDM and the IP-XACT specification of the system platform.

¶ Activity (c) (Figure 2-1), covered by the UML/MARTE PSM modelling activity, which produces

the MARTE PSM model and the different XML files which enables the design exploration (XML

system description and XML design space).

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 10

Figure 2-3: UML/MARTE Design Entry

On the other side, the Matlab/Stateflow design entry for the COMPLEX project covers only a subset

of the activities of the COMPLEX design flow depicted in picture Figure 2-1 related with the MDA

entry and executable specification.

In particular, it covers activities (a)and (e)for the generation of the SystemC executable specification

of the application and activities (b)and (f)for the generation of the Input Stimuli to exercise the

modelled system.

2.2.1 UML/MARTE Design Entry

The COMPLEX modelling methodology is using a UML/MARTE input able to describe a

heterogeneous embedded system composed of SW and HW components, and feeds the simulation and

design exploration processes that enable finding the optimum architectural mapping. Additionally the

COMPLEX modelling environment supports the aforementioned COMPLEX modelling methodology

via the usage of state-of-art capture tools.

The COMPLEX transformation toolset enables the generation of a SystemC specification model from

the UML/MARTE model.An overview of the UML/MARTE input flow is shown in the picture below

and consists of the following steps:

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 11

a) MARTE PIM and System specification in SystemC: The goal of this step in the COMPLEX

flow is to capture a Platform Independent Model (PIM) of the application through the

MARTE front-end and to generate a Concurrent Functional Application Model (CFAM) and a

SystemC specification.

b) Use cases System Input Stimuli and Test bench generation, through one of the following 3

approaches:

a. A methodology to design the test bench environment in parallel with the system

model within the same modelling environment.

b. A methodology to specify test cases and their associated requirements supported by

the system-modelling environment.

c. A mechanism to associate input stimuli to system components.

c) User-generated HW/SW Mapping and Task separation: The UML/MARTE model-driven

front-end regarding the definition of HW/SW partitioning and mapping defines a mechanism

for user or the DSE tool to modify under user specified constraints, the HW/SW partitioning

and mapping

d) MARTE PDM and Architecture Description (IP-XACT): In the UML/MARTE model-driven

front-end the definition and transformations of the PDM is defined under a standard format

(IP/XACT) that enables the exportation of the optimum hardware platform found in DSE,

serving for different uses (e.g., for serving as input for the virtual system generator, and for

implementation phases).

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 12

2.2.2 Matlab/Stateflow Design Entry

The Matlab/Stateflow model-driven front-end can be summarized by the following points:

a) A COMPLEX modelling methodology based on Matlab/Stateflow able to describe the

dynamic behaviour of an embedded system as a function of input stimuli.

b) The COMPLEX modelling environment supports the aforementioned COMPLEX modelling

methodology via state-of-art capture tools.

c) A COMPLEX transformation toolset enabling the generation of a SystemC specification

model from the Stateflow model.

An overview of the Matlab/Stateflow input flow is given in the picture below and consists of the

following steps:

a) Stateflow System specification in SystemC: The goal of this step in the COMPLEX flow is to

capture a Platform Independent Model (PIM) of the application through the Stateflow front-

end and to generate a SystemC specification.

b) Use cases System Input Stimuli and Test bench generation, through one of the following 3

approaches:

a. A methodology to design the test bench environment in parallel with the system

model within the same modelling environment.

b. A methodology to specify test cases and their associated requirements supported by

the system-modelling environment.

c. A mechanism to associate input stimuli to system components.

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 13

2.3 Estimation and Model Generation

2.3.1 Task separation / Testbench gener ation

Figure 2-4: Basic Task Separation Flow

In this step of the design flow, the executable input specification is cut into several tasks. The task

borders may arise fromcommunication boundaries, functionality, user constraints, or could be taken

from allocation/mapping information from the MARTE model. For every specified task, an executable

input model for a downstream estimation tool is generated. This input consists of the source code that

implements the separated task, a test bench for executing the task stand alone, and a Makefile to build

the separated executable model. In case the separated task requires stimuli data, the task separation

and test bench generation tool can also be used to create an instrumented version of the original task

specification. Together with the original input model the instrumented code can be used to generate

stimuli data for a task. The stimuli data can be used as additional input to the estimation tool, in case

the estimation depends on activity patterns. The generated test bench does not only complete the

separated task to form an executable model. It can also be used to execute and test any executable

output model that is generated by the estimation tool.

2.3.2 Source Analysis and Augmented Code Generation (SW tasks)

Figure 2-5: SW-BAC++ generation flow

This step implements two main features of the software related portion of the design flow:

a) Software task analysis

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 14

b) Augmented code generation

Since the two processes are strictly related, they are considered as a single design flow step. More

precisely the augmented code generation need the information (costs and program structure) derived

by the analysis phase.

a) Source code Analysis: The analysis of the source code has the goal of building an abstract

model of the source code of a given task. The input of this step is a software task in the form

of a set of C language source files. The output is constituted by the same input files annotated

with estimation of the non-functional properties being analysed. Report and traces can also be

generated as by-products of the analysis flow.

b) Augmented code generation: The non-functional model produced in the analysis phase is

rearranged in such a way to obtain a new model ï representing the exact behaviour of the task

ï that can be simulated along with the rest of the architecture. Simulation of the augmented

code model includes accounting for execution time and power consumption, as well as other

dynamic non-functional properties that might be potentially of interest within the flow.

2.3.3 Source Analysis and Augmented Code Generation(HW tasks)

Figure 2-6: HW-BAC++ generation flow

This step is composed by threemain features:

a) HW task analysis

b) Augmented code generation

c) Support for different power modes

Those two features are strictly correlated and included within a single design flow step. In this step the

non-functional properties of HW tasks are estimated in terms of power and timing. Using this

information a self-simulating model of the relevant tasks is created that will be used during simulation

of the virtual system prototype.

a) Analysis: First, the high-level description (C/C++/SystemC) of the task is analysed. This

analysis bases on a high-level synthesis. That is, based on the given C/C++/SystemC-

description a power-optimized RTL model is generated. Using a functional simulation of the

RTL model, typical data pattern for all operations are obtained, which are the basis for the

power estimation. During estimation several non-functional properties like dynamic and static

power as well as timing are obtained, according to the synthesis-constraints given by the user

and by the DSE-tool, respectively.

b) Augmented code generation: Having the estimated RTL description available a self-simulation

model of the description is created. Next to the functional behaviour, this model also contains

the non-functional information, obtained during analysis. The model is used during simulation

of the overall virtual system prototype. This self-simulation model is implemented using

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 15

BAC++ (see Section 2.3.4). For each block identified inside the RTL implementation of the

behaviour, the functional part contains the number of clock cycles required by the HW to

execute that particular block and the capacity switched during execution. Data dependency of

the switched capacity is considered statistically.The non-functional model contains

information about supply voltage and clock frequency for each power mode.The actual clock

frequency is used by the observer to calculate the time, a certain piece of behaviour consumed

during execution. The switched capacity together with supply voltage etc. is used to calculate

the power dissipation during execution. When switching from one power mode to another, the

execution time is increased by a penalty, specified in the power mode table. The same applies

to the energy.

c) Support for different power modes:During code generation, a power-controller is generated,

which allows setting the hardware component, implementing the task, into individual power

modes. For mode selection an interface is provided that can be used by the power manager of

the complete system. In order to find a good power management policy for the overall system,

analysis of the system also provides information about additional costs and penalties regarding

switches between power modes as well as information about average power dissipation and

leakage. This information is provided through a power mode table.

2.3.4 Block annotated C++ (BAC++)

Block annotated C++ (BAC++) enriches the functional model of a certain behaviour with additional

information representing the hardware, executing the particular behaviour. This information is used

during simulation to obtain information about the power and timing.

In general, the augmented C++-code contains three parts:

a) The functional behaviour: including estimated values, depending on the actual behaviour

during simulation e.g., switched capacity, clock cycles, instruction count, etc.;

b) the non-functional model: containing information about values that are independent from the

actual behaviour like static power, for example;

c) an observer:translating the measured values into the metrics required by the user that is power

and timing.

Values related to the functional behaviour of the task are represented in terms of per block annotated

C++ code. That code is built from (basic-) blocks, each one containing a small part of the behaviour as

well as metrics for power and timing estimation, directly depending on the behaviour. For HW this

isthe switched capacity and for SW the instruction count, for example. During simulation, different

blocks are executed, depending on the actual control flow, caused be the applied input stimuli.

The non-functional part does not depend on the actual behaviour, but it depends on the HW

implementing/executing the behaviour. It also depends on the processing unitôs current power mode.

That is, non-functional values may be influenced by the overall power manager by setting the power

modes of the processing unit.

The observer combines information from the functional and from the non-functional model, in order

to obtain the metrics required by the user and the DSE-tool, respectively. Thus, it translates the

metrics, obtained during BAC++ simulation into the values that should be traced. In order to reduce

the amount of data created during system simulation, the observer is also able to perform some pre-

processing e.g., sliding window averaging.

It is important to note, that the values enriching the functional model depend on the type of the

processing unit implementing/executing the behaviour. Thus, each of both characterisation-flows

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 16

(i)and (j) from Figure 2-1 will create BAC++, monitoring different values. Same applies to the non-

functional model. As just mentioned, the particular observer is responsible for translating the values

from the functional and the non-functional model into the metrics required by the user. It is also

important to note, that the observers for both, HW-BAC++ and SW-BAC++ use the same API to

communication with the trace file generator.

Figure 2-7: Augmented code estimation

Figure 2-7 shows how the three parts mentioned above collaborate during simulation. It shows a more

generic approach, which is also suitable for software tasks, running on a processor.

If multiple behaviours are mapped to the same execution unit (e.g., multiple tasks running on the same

processor) some kind of scheduler, or even a more powerful real-time operation system (RTOS) is

required. In this case, each task is augmented as mentioned above. The processing unit is still

represented using a single non-functional model. The so-called runnable contains the functional model

of the task, as well as the non-functional model of the HW. It also provides the interface, that can be

used by the overall power manager to set the power modes of the HW component, executing the

behaviour. The runnable is wrapped by the TLM2 template, which enables communication with the

surrounding system.

Runable (BAC++, incl. scheduler)

Behaviour
Non-functional

model

TLM2 template (depending on component type)

Operating mode table

- ID

- Vdd

- fmax

- avg. Pleak

- avg. Pdyn

- penalty (power)

- penalty (delay)

- etc.

Trace file

generator

S
u
rro

u
n

d
in

g

S
y
s
te

m

Component

characterisation

Power controller

generation

Behaviour
Behaviour

(functional model)

Operating mode ID

Policy

Observer (depending on TLM template type)

Trace generation

Information pre -

processing

IF MEM

Estimated values

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 17

2.3.5 Virtual System Generator

Figure 2-8: Virtual system generation flow

In this step in the flow the Virtual platform is generated according to the architecture model and the

task/communication mapping. The goal is to generate an efficient simulation model that can be

executed in the simulation step (see Section 2.4) in order to provide with the simulation trace

information for the design space exploration tools.

The Virtual System Generator generates all the platform skeletons that are needed to integrate the

annotated models for hardware, software and IP into one executable virtual platform. It is capable of

generating skeleton models and of synthesizing interfaces for different flavours of virtual platforms

and their level of abstraction. These include communication interfaces for using the annotated

software model in a platform with an ISS, communication interfaces and skeletons for assembling a

SNPS virtual platform running software tasks on designated VPUs, and skeletons for assembling a

TLM platform for a host based simulation. In case of RTL legacy IP blocks, an RTL-to-TLM

abstraction process is performed to generate the corresponding component of the target virtual

platform.

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 18

Figure 2-9: Model mapping

2.3.6 Global resource manager (Pre-optimized Power Controll er)

Figure 2-10: Power management (GRM)

The pre-optimized power controller consists of two main parts.

a) The first main part contains one power controller per HW component (see Section 2.3.3),

which allows setting of the HW component, implementing the task into individual power

modes, and providing an interface to the Global Resource Manager (GRM) of the overall

system.

b) The second main part is the GRM, optimizing the system parameters at run time, i.e. adapting

the hardware platform and the application configuration during execution in order to further

reduce the power consumption. The GRM acts as a middleware between the application and

the platform. Among other functionalities, the GRM can vary the frequency of processors,

power on and off power islands, select power modes of HW components, or switch between

different qualities of service proposed by the application.

The Global Resource Manager (GRM) is loaded on the host processor of the platform. It is a software

task running in parallel with the applications. The goals of the GRM are as follows:

CPU0 HW0Virtual System Prototype

executable specification

in SystemC (e.g. on CoWare Platform)

C

C

IF

IF

IF

C

C

C

T
L
M

 2
 R

o
u
te

r

(I
B

M

P

L
B

 P
ro

to
c
o
l)

PPC dedicated HW

IF

Memory

Mem

Mem

Memory

Model

OSCI TLM 2

communication

model:

ÅPV

ÅBA

ÅBCA

Contains bus power

& timing model.

T0 T1

T2C
a

c
h

e

M
o

d
e

l

Communication

Graph of T0 only

showing explicit

communication

nodes.

Computation nodes

contain power and

timing annotations.

Instruction & data

fetches are handled

by Cache Model.

System memory

model from IP-XACT

repository.

Communication

graph of T1. Shows

parallel execution

obtained from

behavioural

synthesis. Power

and execution time

annotated in

computation nodes.

TLM initiator socket TLM target socket

sequential C/C++ code

Port

Behaviour (with Active Task)

Parallel Application Description

T0

T1

T2
PPC

IB
M

P

L
B

Arbiter

dedicated HW

Architecture/Platform Description

ISA, pipeline, cache

behaviour,

clk freq.

voltage & freq. scaling

width, protocol

scheduling policy

target technology

CPU0
HW0

executable specification

in SystemC

Mem

data & address

widths

max.

area

Behaviour (with Passive Task)

Interface

Mapping Description
T0 - > CPU0

T1 - > HW0

T2 - > HW0

S
y
s
te

m
-L

e
v
e

l
M

o
d

e
l

T
L

M
 M

o
d

e
l

system

specification

in SystemC

system

input

stimuli

pre-optimized

Global Resource

Manager

(SW task)

HW/SW task separation & testbench generation

source analysis

behavioral synthesis

functional, power,

& timing

model generation

source analysis

cross compilation

functional, power,

& timing

model generation

virtual system generator with

TLM2 interface synthesis

bus cycle accurate

SystemC model

with self-simulating

power & timing models

simulation

trace

B
A

C
+

+

B
A

C
+

+

H
W

ta
s
k
s

S
y
s
te

m
C

e
s
ti
m

a
ti
o

n
 &

 m
o

d
e

l
g
e
n

e
ra

ti
o
n

s
im

u
la

ti
o

n

e
x
p

lo
ra

ti
o

n
 &

 o
p

ti
m

iz
a

ti
o
n

S
W

ta
s
k
s

e
x
e
c
u
ta

b
le

s
p

e
c
if
ic

a
ti
o
n

visualization/

reporting

tool

trace

analysis tool

p
o
w

e
r/

p
e
rf

o
rm

a
n
c
e

m
e
tr

ic
s

user
exploration &

optimization

tool

MARTE

PIM or

Matlab/

Simulink

user

constrained

HW/SW sep.

& mapping

MARTE

PDM

(Platform

Description

Model)

parameters for

new design space

instance

d
e
s
ig

n
 s

p
a
c
e
 d

e
fi
n
it
io

n

design space instance

parameters

M
D

A

d
e
s
ig

n
 e

n
tr

y

Åfunctional reimplementation

Åhardware/software

partitioning/separation

Åruntime management

Åembedded software/compiler

optimizations

ÅIP platform selection &

configuration

Åmemory

configuration/management

(static & dynamic)

Åcustom hardware synthesis

constraints

use-cases

architecture/platform

description

(IP-XACT)

virtual platform

IP component

models

S
y
s
te

m
C

Power

Management

HW Interface

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 19

First, this GRM should support a holistic view of resources and quality management. This is needed

for global resource allocationdecisions, arbitrating between all applications, and optimizing a

utilityfunction (also called Quality of user Experience (QoE)), given theavailable resources. This

QoEallows trade-off, negotiated with the user, between quality and cost.

Second, this GRM should transparently optimize the resource usage and the application mapping on

the platform. This is needed to facilitate the application development and manage the quality

requirements without rewriting the applications.

Third, this GRM should dynamically adapt to changing context. This is needed to achieve a high

efficiency under changing environment.

Since such a GRM is intended for embedded platforms, a lightweightimplementation only is

acceptable. To that end, this GRM should be considered in the system simulationto control its

complexity and monitor itsoverhead, such as performance and power consumption.

2.3.7 Summary: Model Estimation and Generation Flow

Figure 2-11: Model estimation and generation overview

COMPLEX Project22

sequential

C/C++

Protocol

Elements

Library

Ch.

seq.

C/C++/SystemC

with or without

wait()Protocol

Behaviour

Parallel Application Description

M0

M1

M2
CPU

B
u

s

Arbiter

dedicated HW

Architecture/Platform Description

ISA, pipeline,

cache behaviour,

clk freq.

voltage & freq.

scaling

width, protocol

scheduling policy

max.

area

technologyMapping Description
M0 - > CPU0

M1 - > HW0

M2 - > HW0

CPU0
HW0

SPIRIT/IP-XACT

C/C++ Front-End

FOSSY*
Elaborator

CPU

B
u

s

Arbiter

dedicated HW

CPU0
HW0

Virtual System Description

untimed/causal

simulation trace

(data)

ChipVision

PowerOpt

SW execution

time

estimator

ñ3 Address

SystemCò with

instrumentation

(exec. time,

stat. & dyn. power)

ñ3 Address

SystemCò with

instrumentation

(exec. time)

int. rep.

to C writer

internal

design

representation

Int. rep.

to virtual system

seq. C-Code

cycle accurate

simulation trace

(data, time,

stat. & dyn. power)

OSCI TLM 2

communication

model:

ÅPV

ÅBA

ÅBCA

executable specification

in SystemC

executable

specification

in SystemC (e.g. on CoWare Platform)

block testbench

TB generator

e.g.

behaviour(M0)

e.g.

behaviour(M1)

behaviour(M2)

IP
-X

A
C

T
 F

lo
w

Platform

Vendor

XY

TLM

Architecture

Templates

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 20

2.4 Simulation

In this step a detailed evaluation of the HW/SW platform,obtained by the previous part of the flow, is

obtained through a simulation of. Considering the possibility to adopt the COMPLEX flow for the

design of a node into a distributed environment the goal of this step is not only to take care of Bus

Cycle Accurate SystemC/BAC++ Models of the platform in a closed environment. Incase of

networked embedded systems, this step includes also the evaluation of distributed environments

through a network simulation performed in SystemC.

Figure 2-12: Simulation of the virtual prototype

2.5 Exploration and Optimization

DSE is a central phase in design of novel computing

platforms. In fact, for a given system specification

there may be many different design alternatives that

need to be evaluated and judged to understand their

quality and to take a decision on which is the system

alternative to implement.Design alternatives may

consist of tuning and allocating hardware components,

different mappings of software tasks to resources,

different scheduling policies implemented on shared

resources, functional modifications, memory

assignment, as well as lower level design parameters

such as clock frequency or bus/network width.

DSE involves the analysis of multiple criteria, since

each design alternative usually represents a trade-off

among different optimization goals. For instance, if we

consider high performance processors, usually they are

more expensive in terms of area and power

consumption than low performance processors. So far,

most design optimization methodologies just regard

one single cost aspect, e.g., energy or speed or

memory footprint. However, the side effect of

optimizing one cost aspect is often that the others

become worse, by an unpredictable quantity.

The Design Space Exploration (DSE) step is the part

of the design flow capable to create a feedback loop

between performance estimation and parameters

configurations of the target system. In the COMPLEX

flow, the DSE loop can interact at different level on a

different set of parameters.

system

specification

in SystemC

system

input

stimuli

automatically

pre-optimized

power

controller

HW/SW task separation & testbench generation

source analysis

behavioral synthesis

functional, power,

& timing

model generation

source analysis

cross compilation

functional, power,

& timing

model generation

virtual system generator with

TLM2 interface synthesis

bus cycle accurate

SystemC model

with self-simulating

power & timing models

simulation

trace

B
A

C
+

+

B
A

C
+

+

H
W

ta
s
k
s

S
y
s
te

m
C

e f

h

i j

l

m n o

e
s
ti
m

a
ti
o

n
 &

 m
o

d
e

l
g

e
n
e

ra
ti
o

n
s
im

u
la

ti
o

n

e
x
p
lo

ra
ti
o

n
 &

 o
p

ti
m

iz
a

ti
o

n

S
W

ta
s
k
s

e
x
e
c
u

ta
b

le

s
p

e
c
if
ic

a
ti
o

n

visualization/

reporting

tool

trace

analysis tool

p
o

w
e

r/
p

e
rf

o
rm

a
n
c
e

m
e

tr
ic

s

user
exploration &

optimization

tool

p

q

r

sMARTE

PIM or

Matlab/

Simulink

user

constrained

HW/SW sep.

& mapping

MARTE

PDM
(Platform

Description

Model)

c

parameters for

new design space

instance

d
e

s
ig

n
 s

p
a

c
e
 d

e
fi
n
it
io

n

design space instance

parameters
t

a d

M
D

A

d
e

s
ig

n
 e

n
tr

y

Åfunctional reimplementation

Åhardware/software

partitioning/separation

Åruntime management

Åembedded software/compiler

optimizations

ÅIP platform selection &

configuration

Åmemory

configuration/management

(static & dynamic)

Åcustom hardware synthesis

constraints

use-cases

architecture/platform

description

(IP-XACT)

virtual platform

IP component

models

g

S
y
s
te

m
C

b

k

Figure 2-13: Exploration / optimization flow

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 21

At MDA design entry and Executable Specification levels, the exploration loop can act by exploring

the design space in terms of:

¶ Functional Reimplementation

¶ Mapping of HW/SW tasks

¶ IP Selection and Configurations

¶ Memory Configurations

On the other side at the Estimation and Model Generation level, the explorable parameters range

within the following list:

¶ IP Configuration

¶ Memory Configuration

¶ Custom Hardware Synthesis constraints

¶ Selection of Embedded SW optimization

¶ Runtime Management strategies

2.5.1 Simulation Trace s and Analysis

In this part of the flow the activity- and power-relevant data of the different platform parts are

extracted. Which are then pre-processed to be eithergraphically presented to the designer through a

visualization reporting tool or to be used by automatic exploration and optimization tool.The

visualization engine takes power and activity-data prepared by the analysis tool and presentsthis

information to the designer.

2.5.2 Design Space Exploration

The Design Space Exploration (DSE) step is the part of the design flow that creates a feedback loop

between performance estimation and parameters configurations of the target system. Starting from the

definition of the design space, the DSE step iteratively generates an instance of the design space to be

given as input to the model generation phase. The simulation phase uses the generated model to

estimate the performance values, and to give feedback to the DSE step for the generation of the next

design space instance.

It is a step in the flow that is needed for surfing the design space (changing the system parameters) in

order to find the optimal system configurations among all the possible alternatives that are part of the

design space. Moreover, the design space exploration loop is also used to determine some knowledge

about the system parameters (such as the main effects, interaction effects) and design space (such as,

configuration distribution with respect to the system performance). This phase can be done by using a

user controlled DSE or an automatic DSE environment.

a) In the automatic design space exploration and optimization tool there is automated interaction

with system models in order to avoid intervention of the designer once the target problem is

formally defined (except for the analysis of the results).

b) Theuse of a user centric DSE flow is possible to allow a detailed analysis of the system

behaviour (e.g. trace analysis or time behaviour), once the problem cannot be formally defined

or it is not easy to be defined, or when the automatic modification of the parameters on the

system model is not possible or requires a larger modelling effort.

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 22

Summarizing, On the one hand the user can constrain the overall platform selection, deduce further

constrains on HW/SW separation, or identify power-consuming implementations and replace them

with power-efficient ones. On the other hand, the automatic exploration and optimization tool is based

on multi-objective optimization heuristics to efficiently navigatea parametric version of the overall

design space defined formally.

2.5.3 DSE-XML Interface

The interaction between user agents and the exploration framework is shown in the following figure:

Figure 2-14: Design space exploration flow

Essentially, two kinds of user agents are assumed to interact with the exploration framework:

Å Use case and simulator provider. This is the provider of the use case and its associated simulator.

He is responsible of releasing the combined package of the system simulation model (or an automatic

flow to generate it) and the target application running on it.

Å Exploration architect . This is the user architect who is responsible of identifying the optimal

configuration of the architecture underlying the use case.

A use case is defined as the combination of the target architecture and the application running on it.

The simulator is the executable model of the use case and it is a single executable file (binary or

script), which interacts with the design space exploration tool to provide the value of the estimated

metrics, given an input configuration. In literature, the simulator is also referred to as the solver.

We define the interface between the Design Space Exploration Tool and the exploration architect as

the human-computer-interaction interface. This interface can be GUI (Graphical User Interface)-based

or command-line-based and it is used for specifying and solving the exploration problem in terms

optimization metrics and constraints.

The goal of the DSE-XML interface is to addresses the interaction between the simulator and the

design space exploration tools, which is essentially an automatic program-to-program interaction. In

general, the interaction can be described as following:

¶ The design space exploration tool generates one feasible system configuration whose system

metrics should be estimated by the simulator.

¶ The simulator generates a set of system metrics to be passed back to the design space exploration

tool.

The specification of the formats of the input/output data to/from the simulator is defined as the

explorer/simulator interface.

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 23

In order to link the use case and the simulator to the design space exploration tool, a design space

definition file should be released by the use case and simulator provider together with the executable

model of the use case (simulator). This file describes the set of configurable parameters of the

simulator, their value range and the set of evaluation metrics that can be estimated by the simulator.

This file describes also how to invoke the simulator as well as an optional set of rules with which the

generated parameter values should be compliant. The rules are only used by the exploration tool in

order to do not generate invalid or unfeasible solutions during the automated exploration process.

The DSE-XML specification [18] provides an XML based grammar for writing both the design space

definition file and the simulator interface files.

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 24

3 Application and platform definition and generation

3.1 Overview

The generation of a virtual system takes various steps. Several steps in the virtual system generation

are interchangeable. Other steps might involve the integration of different tools or not. Some steps

might be automated or not. The definition of all these aspects depends on the selection for the initial

input description, on the target platform which is aimed at, and on the performance estimation tools

and techniques involved. Of course, such a configuration heavily depends on purpose given to the

generated virtual platform.

The COMPLEX flow enables the integration of different front-ends, which enable different ways to

capture the model, and different simulation and performance estimation technologies, to play with the

trade-off between simulation speed and accuracy enabled by the generated virtual system. For

instance, an executable model written in SystemC could already exist, written by the user, or it might

need to be generated from MARTE/UML or, for example, the virtual platform can use a pre-synthesis

or a post-synthesis estimation technique.

This document explains how the COMPLEX tooling involved in the generation of a SystemC-based

virtual system is integrated. The document explains the mains aspects of the integration which appear

when traversing the global view of the virtual system generation, according to the general complex

flow.

Figure 3-1: Generic view of system generation front-end, task separation and interface synthesis.

Such global view is shown in Figure 3-1, which is a simplified excerpt of the COMPLEX Framework,

shown in Figure 5 of the DoW. Figure 3-1 shows that the generation of the virtual system has to take

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 25

into account main aspects, such as the front-end, the task separation, the instrumentation of the source

code for SW and HW performance analysis, and the TLM2 interface synthesis.

Figure 3-1 shows the minimum set of pre-requisites for the generation of a virtual system in the

COMPLEX framework. A first pre-requisite regards the input front-end: at least a SystemC executable

specification should be available. Moreover, COMPLEX framework enables the possibility of a

higher-level input from UML/MARTE and Stateflow models, which, in a latter term, can be converted

into a SystemC executable. A SystemC TLM specification can be also generated from legacy RTL IP

blocks through abstraction. Second, the specification code that should be implemented either in HW or

SW has to be separated from the executable model based on mapping information. Mapping

information can be either provided by the user or automatically automated from the high-level input.

Third, the separated HW and SW blocks must have been processed by the corresponding estimation

tools, generating instrumented versions of the executable models. Fourth, for those parts of the system

which are not obtained from the task separation, appropriate (TLM2) IP models must be available.

When the preconditions listed above are satisfied, the building blocks for the virtual system are

available. In order to combine those building blocks to form a virtual system, the system generation

must perform several operations. First, it must gather the input blocks for the system, i.e. the

instrumented models that stem from the estimation of the separated tasks and the virtual platform IP

models. Second, TLM interfaces must be synthesised to create wrappers for the instrumented

components. These wrappers allow an integration of the varying components into a TLM 2.0

environment. Third, the TLM 2.0 wrappers for the HW/SW components must be interconnected with

the IP models.

The result of the system generation is an executable virtual SystemC system description with all

instrumented components interconnected via TLM 2.0 interfaces. This system description can be

further refined and mapped to specific virtual platforms by corresponding back-ends.For instance, in

the specific flow applied in use case two, two back-ends will be exerted in order to map the virtual

system to two distinct refined virtual platforms. The first target platform is the SNPS virtual platform.

Extended SNPS platform models will need to be instantiated to compose the system for this target.

The second target platform is the ST-I platform. In order to map to this target platform, the ReISC

microprocessor running FreeRTOS and the peripherals associated to this architecture must be

emplaced.

How these integration aspects (front-end and back-end, task separation, integration of IP blocks,

virtual system generation) are solved in different ways, they might be encrusted in a single tool or

spread among different ones. Specifically, Figure 3-2 and Figure 3-3 sketch the integration solutions

covered in COMPLEX, relying in use case 2 and 3 flows.

Figure 3-2 sketches the flow for the generation of the host-based simulation used in use case 2. In this

case, the generation of an augmented virtual system is directly fed with a SystemC executable model

(see Section 2.4 for details). Furthermore, mapping information for task separation and a platform

definition for mapping to a target platform is provided. In case the executable model is specified by

the user like in use case 2, the mapping information and the platform definition is added manually.

In this generation flow, the SMOG tool (section 3.2.5) is in charge of task separation and virtual

generation tasks, including the synthesis of the TLM interfaces that are needed to interconnect the

system components, and specifically the TLM2 IP components. SWAT tool (section 3.2.7) is in charge

of SW estimation, while HW estimation is performed through PowerOpt+ (section 3.2.6). Therefore

this integration enables a performance simulation based on native simulation of software and post-

synthesis custom HW estimation.

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 26

Figure 3-2: System generation front-end, task separation and interface synthesis in the use case 2.

Figure 3-3 shows how the integration is solved in the use case 3. In this case, a significant part of the

integration aspects are encrusted in the SCoPE+ framework.

Figure 3-3: System generation front-end, task separation and interface synthesis in the use case 3.

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 27

Figure 3-3 sketches the integration designed and developed for use case 3, in order to enable a

(Eclipse-based) graphical front-end which enables the user both, the UML/MARTE capture of the

model (reported in D2.1.1), and an automatic generation of the virtual system. The same graphical

front-end provides a set of generators (violet arrows) (reported in D2.1.2), which automate the

extraction of a set of files. These files contain the information of the UML/MARTE model required

for the generation of the executable virtual system in convenient text formats, which are readable by

the SCoPE+ framework (after the installation of some specific plugins for enabling the CFACM, the

XML and the IP/XACT front-ends). Specifically, the CFACM front end enables to feed SCoPE+ with

a platform independent model (PIM) which captures the system functionality encapsulated within

components (see D2.1.1). CFAMCM code is extracted from the UML/MARTE model through the

Marte2cfam generator (see D2.1.2). The CFACM code has a direct translation into SystemC, which,

after integration with the SystemC stimuli, enables the generation of a SystemC Platform Independent

model, shown on the left hand side of Figure 3-3. This SystemC PIM enables a direct link (shown as

black arrow on the left hand side of Figure 3-3) which could feed other alternatives for the generation

of the virtual system, as the one show on Figure 3-2. Notice that this SystemC PIM is different from

the SystemC executable shown at the bottom of Figure 3-3, which represents the platform specific

model after taking into account the platform model and the architectural mapping. This model is then a

performance executable model which can provide fast estimations of time, power and other

performance metrics, and thus which can be employed by the exploration tool.

For the generation of such performance model, in the virtual system generation flow of Figure 3-3,

SCoPE+ is able to directly read CFAM code. Moreover, SCoPE+ has to read the architectural

mapping information enclosed in XML files automatically generated from the UML/MARTE model.

Similarly, the platform information, and moreover, information regarding the Design Space (which

parameters can be configured and in which range), is automatically produced in XML format from the

UML/MARTE model. Part of the information, specifically the HW platform architecture can be

handled under the IP-XACT format. A seamless connection is ensured by the Marte2IPXACT

generator, and the IP-XACT plugin which enables SCoPE+ to read such format. The black arrow on

the right hand side of Figure 3-3 shows how the IP/XACT output can serve to feed other flows for the

generation of a virtual system, e.g. a virtual system based on the SNPS tool virtual platform creator.

More information about the code generators is reported in D2.1.2. The XML and IP-XACT front-end

plugins were available in previous versions of SCoPE and they have been refined just for COMPLEX.

Like in Figure 3-2, where SMOG is in charge of SW/HW separation and virtual system, generation, in

the Figure 3-3, SCoPE+ framework solves these aspects of the integration. Moreover, SCoPE+

embeds the elements for instrumentation of the code for SW performance estimation. Moreover,

SCoPE+ integrates the framework reported in D2.4.2, for high-level performance estimation of custom

hardware implementation of functionality. This way, the virtual system generated under the scheme of

Figure 3-3 enables a fast performance estimation alternative, based on native simulation and pre-

synthesis techniques for the HW parts of the system. In a similar way as in Figure 3-2, the Figure 3-3

integration enables the integration of TLM2 SystemC IPs, since SCoPE+ builds internally a TLM2

platform which admits the integration of user models at the platform level. Moreover, the integration

can be done from upper levels, provided that XML (or IP-XACT) wrappers are provided for the

SystemC IPs.

Following sections provide an insight on how all these aspects, generically introduced in Figure 3-1,

are solved in COMPLEX for the variety of technologies and tool involved, as shown by Figure 3-2

and Figure 3-3.

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 28

3.2 Tools summary

3.2.1 UML/MARTE TC

COMPLEX Eclipse Application (CEA) is the direct result of task 2.1. This application has been

developed over the Eclipse Helios framework, mainly using open standards (Model2TextLanguage,

JAVA) for the implementation of the transformation engines.

It is aimed to create a modelling environment that, starting from UML/MARTE models, enables the

user to simulate and explore different implementation alternatives with minimal effort. For such

purpose, the infrastructure generate intermediate files that have been adapted to be compliant with the

XML inputs defined by the SCoPE+ simulator and MOST design space explorer. As a result, the

COMPLEX Eclipse Application tool allows the user to:

¶ Model the embedded system at both application and platform levels in different model views.

¶ Generate the CFAM and SystemC executable models.

¶ And finally, execute the Design Space Exploration loop.

In order to achieve these goals, the application has been developed as an Eclipse plug-in that can be

installed as a single package. However, it internally contains the set of elements required both for

modeling and code generation. The application integrates an infrastructure consisting in the following

elements:

¶ UML Profiles: MARTE and COMPLEX specific profiles.

¶ A set of analysis tools that help the user during the system modelling by checking the validity

of the model.

¶ A set of generators developed to obtain from the UML/MARTE model text-based

representations suitable for the production of the SystemC executables for validation,

performance estimation and DSE exploration

¶ A graphical interface (GUI), simplifying the use of all the previous elements, and providing

set of options for triggering DSE activities.

The generators enable the user to independently trigger each of the different code generators from the

UML/MARTE model. The CFAM generator is implemented by the COMPLEX MARTE2CFAM

plug-in integrated in the COMPLEX Eclipse Application. It consists of an Eclipse plug-in that

transforms the UML/MARTE model into the CFAM skeletons and a set of functional code containers

(written in C++) that abstracts the functional code from the execution platform. This generated code

will be the input for the SCoPE+ tool, which is in charge of performing the high-level estimation of

the system.

A XML code generator called MARTE2SCoPE has been developed and integrated in the COMPLEX

plug-in for direct connection with SCoPE+ and MOST. The COMPLEX MARTE2SCoPE generator is

a tool able to automatically produce XML filesfromUML models created under the COMPLEX

UML/MARTE methodology. MARSCoPE is structured into two generators: Marte2xmlSD and

Marte2xmlDS. MARSCoPE generates at least two files. Marte2xmlSD produces at least one XML file

with the system description in the shape of one XML file which contains the architecture of the system

platform including, HW and SW components; the HW architecture; and the allocation of application

components into platform components. Marte2xmlDS generates at least a second XML file which

describes the exploration space, that is, the design space exploration (DSE) parameters that enable the

system design exploration. Additionally, the generator can produce the design exploration rules, which

constraint all the possible design alternatives to be covered by the exploration tool, in XML format.

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 29

The XML code generated serves as input for the SCoPE+ tool in order to simulate and evaluate each

configuration of the design of the system to be implemented.

Another generator called MARTE2Stimuli, enables the extraction of a set of SystemC test benches,

reflecting the different scenarios which involve the system and its environment in different test cases.

The MARTE2Stimuli generator is implemented by the COMPLEX MARTE2Stimuli plug-in

integrated in the COMPLEX Eclipse Application.

A part from the tool flow developed for simulation and exploration, the tool has been extended to

support an alternative flow based on IP-XACT. For such purpose, an IP-XACT plug-in capable of

generating IP-XACT files from the UML/MARTE models has been developed and integrated in the

tool. Since it represents a different tool flow, it is presented later.

The graphical user interface (GUI) is mainly based on user menus, pop-up menus over UML models

and messages windows that interact with the user during the different operations.The following image

depicts the Eclipse interface including the CEA tool interface.

Figure 3-4: COMPLEX menu.

As it is shown in Figure 3-4: COMPLEX menu.

, the COMPLEX menu enables several options:

¶ To analyze the model: The MARTE model analysis is intended to early detect inconsistencies

in the model that could lead to errors in the generated code or problems during the code

generation process.If the analysis repors errors, the Eclipse ñproblemsò view shows a message

indicating the type of problem.

¶ To trigger any of the different generators: MARTE2CFAM, MARTE2SCoPE,

MARTE2Stimuli, MARTE-IPXACT.

¶ To trigger the Design Exploration tools: Generation of the scripts that wraps the integration of

the MOST, SCoPE+ and COMPLEX Model Checker (CMC) tools. The CMC verifies the

preservation of the non-functional properties during the simulation.

¶ To configure the COMPLEX framework.For instance, specifying the time of simulation, the

system metrics to be obtained during the design process (latency, power consumption)

defining the constraint of this system metrics (maximum, minimumé), libraries, compiler

options, librariesé

¶ To give information about the authoring

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 30

The CEA tool has been made available in the COMPLEX Eclipse update site:

http://offis.complex.de/eclipseupd/release/

which, in turn, is placed in the COMPLEX website.

3.2.2 HIFSuite/Stateflow

The code generation from Stateflow descriptions is based on the HIFSuite tool. HIFSuite is based on

an intermediate language, namely the Heterogeneous Intermediate Format (HIF) and a set of front-end

and back-end tools to map other languages to and from HIF.

Internally to HIFSuite, the correctness of generated code is guaranteed by implementing a formal

model of computation, named UNIVERCM[20]. The subsequent design flow, incorporating the

HIFSuite, is reported in Figure 3- and it is composed by the following steps:

1) Translation of input MDL description into HIF/UNIVERCM by using a front-end translator,

namely sf2hif. This is the most critical phase, since it requires a semantic mapping between

Stateflow models and UNIVERCM models.

2) Translation of HIF/ UNIVERCM description into SystemC or C++, by using a single back-

end translator, namely hif2cpp. During this phase, the back end translator calls an algorithm,

implemented by using the visitor design pattern, to refine the HIF description into either

SystemC or C++ description.

Figure 3-6: TheSystemC/C++ code generation flow, exploiting HIF/univerCM format..

To better clarify the Stateflow-to-UNIVERCM mapping issues, the main features of UNIVERCM are

here reported.

UNIVERCM is a computational model which allows representing heterogeneous systems as Finite

State Automata (FSA). For example, it allows to model in uniform way software, digital hardware,

and continuous components like analogue hardware or the environment. UNIVERCM allows discrete

evolution on transitions, while continuous is represented by differential equations computed into

states. UNIVERCM supports priorities between states and transitions, in order to represent more

concisely complex behaviours. Some important features are:

http://offis.complex.de/eclipseupd/release/

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 31

¶ Variables: can be of discrete, continuous or wire type. In this work, only discrete variables

have been used.

¶ Labels: are conceptually similar to events, since they do not have any associated value. They

can be used to synchronize parallel automata.

¶ Transitions: can have guard to allow they crossing, and actions. Guards can involve both

labels (enabling labels) and variables (enabling conditions). Actions can involve both label

generation (updating labels) and variable assignments (updating variables).

¶ Automaton: different automata are always considered to evolving in parallel. Thus, eventual

synchronization must be explicitly represented (e.g. by using variables and labels). Automata

can be used to represent a variety of different components, like SW threads, SW processes,

HDL processes and functions.

Conversely to many other computational models, UNIVERCM has not been designed for top-down

design methodologies, like Model Based Design. Instead, it is focused on bottom-up design flows.

Therefore, it can be used as a unifying model for different languages. For example, reuse of IPs

written in different HDLs can be implemented by mapping corresponding languages to univerCM, and

then mapping the UNIVERCM representation to the preferred output HDL

3.2.3 HIFSuite/A2T

HIFSuite is a set of tools and file formats for Automatic HDL Conversion and Abstraction. This

means that with HIFSuite you can translate RTL modules from VHDL or Verilog to SystemC 2.0,

either RTL or TLM. If the conversion into TLM is chosen it is called abstraction [19].

The tools are C++ applications that can be run and configured directly from the command line and

they are available both for Linux and for Windows.

The following figure shows the diagram of the elaboration flow, starting from the original RTL

module modeled with VHDL or Verilog, ending with the converted SystemC module. In the middle is

the HIF Format used to create a local representation of the design independent from the original

description language. At this stage the module can be manipulated using the Core API and then

converted into SystemC. This manipulation strategy is used by the Automatic Abstraction Tool and by

the Hierarchy Remover tool to create the TLM counterpart of a design and it can be used by designers

to create custom manipulation tools.

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 32

Figure 3-7: HIFSuite conversion and abstraction flow.

The Parsing tools are used to build the internal representation of the original module (Front-End),

while the Generator tools are used to create final version of the module (Back-End). At least One

Parser or one Generator for each language supported by HIFSuite must exist.

The A2T is responsible to apply the transformation to the design according to the SystemC TLM 2.0

specifications.The Hierarchy Remover is a utility tool that allows to flatten the hierarchy in the design.

It is useful to remove the module's internal hierarchy when only the interfaces are relevant in the final

design. This is the case of the abstraction, which is used to get a new module that is equivalent in

terms of behavior and not in terms of structure.

Once the original module is imported and converted into its equivalent HIF representation, the

designer may apply any kind of change and transformation using the Core API. The Core API is a set

of C++ functions that work on the internal representation of the module. . The HIF (HIF stands for

Heterogeneous Interchange Format) is a structured format suitable to represent hierarchical designs. It

can be dumped to file as XML when a readable format is required.

The process that abstracts an RTL description towards a TLM description relies on a formal model

that allows us to represent designs at different abstraction levels. Among different alternatives, we

select the extended finite state machine (EFSM). Given an EFSM of the RTL IP, the proposed

abstraction technique is composed of the following main steps:

1) Identification of computational phases. An EFSM can be subdivided in three different kinds

of subgraphs composing the behavior of the RTL IP. They are: input subgraphs, where the IP

gets data from the primary inputs, elaboration subgraphs, where the IP computation is carried

out, and output subgraphs, where the computation result is put to the primary outputs. Paths

inside such subgraphs represent different computational phases of the design. Subgraphs and

computational phases are identified and used in the subsequent steps of the methodology for

generating the TLM functionality and communication interface.

2) Generation of the TLM functionality. States composing each elaboration subgraph are

merged into a single macro state. We obtain a macro state per elaboration subgraph by

applying appropriate merging rules.

3) Generation of the TLM communication protocol. The communication protocol of the TLM

IP is generated by implementing an interface compliant with the OSCI TLM-2.0 standard

library, to guarantee the generated model interoperability and reuse. Moreover, an opportune

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 33

TLM IP driver is implemented to allow the master to correctly interface to the TLM IP. The

communication protocol and the driver are automatically implemented by analyzing the input

and output subgraphs of the RTL EFSM

3.2.4 IP-XACT TC

The IP/XACT tool chain consists in MARTE to IP/XACT generator. This generator reads the

COMPLEX UML/MARTE model and produces a XML file description of the HW platform

architecture under the IP/XACT standard. Such IP/XACT description feeds the basic HW platform

information to the design flow after Design Space Exploration activity. In the COMPLEX use case 3,

it is put into practice by using the automatically generated IP/XACT description for the generation of a

virtual platform through the Synopsys VP tool chain (section 3.2.8). The created VP serves as a

reference performance model for validating the design decision taken after the design exploration

loop, which relied on SCoPE+ for fast performance estimation. In COMPLEX use case 3, the

generated IP/XACT description is read by Magillem tool chain, which in turn generates the input

scripts which serve as entry for the Synopsys VP tool chain. Details about how IP/XACT tool chain,

Magillem TC and Synopsys VP, are integrated are reported in [22]D2.5.3 ñFinal report and tools on

virtual system generationò.The next figure show the flow without the IP-XACT TC

Figure 3-8: Flow without IP-XACT TC

The next figure shows the flow using IP-XACT TC:

COMPLEX/SNPS/R/D1.4.2/1.1 Public

Framework for platform based design-space exploration

 Page 34

Figure 3-9: Flow using IP-XACT TP

Detailed description about all steps defined in this flow can be found in D2.5.3 Final report and tools

on virtual system generation-confidential.

