Public

FP7-ICT-2009 4 (247999) COMPLEX

SEVENTH FRAMEWORK
PROGRAMME

COdesign and power Management in PLatform
based design space EXploration

Project Duration 200912-017 201211-30 Type IP

WP no. Deliverable no. Leadparticipant

‘ H
@'PLQ‘I_ WP3 D3.2.2 POLITO

Final report on embedded software and hardware
optimization

Prepared by Massimo Poncing Haroon Mahmood (PoliTo),
Carlo Brandolese, Gianluca Palermo, William
Fornaciari (PoliMi), Sven Rosinger, Kim
Gruttner (OFFIS)

Issued by POLITO

Document Number/Rev. COMPLEX/ POLITO/R/D3.2.2/1.0
Classification COMPLEX Public

Submission Date 2012-02-29

Due Date 2012-02-29

Project co-funded by the European Commission within the Seventh Framework Programme (20€2013)

© Copyright 2012 OFFIS e.V., STMicroelectronics srl., STMicroelectronics Beijing
R&D Inc, Thales Communications SA, GMV Aerospace and Defence SA, SNPS Belgium
NV, EDALab srl, Magillem Design Services SAS, Politecnico di Milano, Universidad de
Cantabria, Paolecnico di Torino, Interuniversitair Micr&lectronica Centrum vzw, European
Electronic Chips & Systems design Initiative.

This document may be copied freely for use in the public domain. Sectiahsnafy be
copied provided that acknowledgement is given of this original work. No responsibility is
assumed by COMPLEX or its members for any aplication or design, nor for any
infringements of patents or rights of others which may result from the ulsis aibcument.

COMPLEXPOLITO/R/D3.2.21.0
Final report on embedded safire and memory optimization

Public

History of Changes
ED. REV. DATE PAGES |REASON FOR CHANGES
Massimo Poncino 1.0 201202-29 (56 First release of final version.

Page2

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

Table of Contents

1 ScOpPE Of the DOCUMENL.......uuiiiiiiiiiiiiie et ieeeiib bttt e e e e e emer e e et e e e e e e e e e e e e e e e e ammn s 4
2 Embedded SW OptimiZation.......cccoeeieieeeeeiesieeeie e rene e e e e e 5.
2.1 Compiler optimizations eXploration...............ceeeeieiiiieeeiiiiiiiiiiieeeeee e 6
2.1.1 Optimization space Modelling...........ccooiiiiiiiiiiice e 6
2.1.2 Optimizations CIUSTEIING........coiiiiiiiiiiie e e e eeer e e e ee e 4
2.1.3 FlOW EXECULION. ...ttt ceeiit ettt e e e e e e e e s et et e e e e e e e e e e e e e s nnne s 9

2.2 Source to source optimization flOM..........ccc.ueiiiiiiiiieee e 13
2.2.1 Optimization NNt @NGINE.........ccoiiiiiiiieeeee e 13
2.2.2 Optimization nt rule definition............cooooriiiiiiiiicc e 14
2.2.3 Flow execution of the optimization hint engine.............c.ccoeeeeveeececieeeeeeennn. 16
2.2.4 Transformation effectiveness quantitative estimator...................cccoeeeeeennns 16
2.2.5 Flow execution of the transformation effectiveness estimatat................... 17

2.3 ParametriC eXplOration...........oooiiiiiiiiiiieeen st eeeess e e s 18
2.3.1 Target independent configuratiQn..................uuuuuiccmreeeeiriiieiienee e e eeenenns 18
2.3.2 Target dependent CONfIQUIAtIQN.........coeviieeiiiiiiiiee e 20

P2 1o To | PP PP PR R R PPUUTPPPPPRR 22

p A R T V= o 0] < o oS TTR 22

2. 4.2 SWAEOPL. . .iiieii it a b ——————— 23
2.4.3 SWAEIJE ... e ettt e ennn s 24

3 Custom hardware OptimIZatioN..............uiiiiiiiieceeeier e e e aeeer e e e e e e e e e e eeees 25
3.1 High level synthesis optimizations...........cccooviiiiiiiiccc e 25
3.1.1 Techndogy Selection and Parameter Ranges...........cccceeeeeiiiecervevvnnnnnnnnnn. 25
3.1.2 Evaluation of Power Gating ModelS...........ccooooiiiiiiiccee 27
3.1.3 Evaluation of IPLevel Application of Power Management................c........ 35

3.2 MemOry OPtMIZALION........uuuuiiiiiiiiiiiiei ettt e e e e e e e e e e e e e e e 39

I 0220 A [o1 o o [Fox 1 o] o ST 39
3.2.2 EnergyOptimization of scratchpad memories...............covvvvviicccreeeeeeiinnnnns 39
3.2.3 Concurrent Aging and Energy Optimization of scratchpad memories.......40

4 APPliIcation 10 USECASES.......cceiiiiiiiiiieiieeee ettt eeensssbbe s e e e e e eeeaeeeean 51
4.1 USE CASE L.ttt e e e b 51
4.2 USE CASE 2.t ettt ettt b et et b e 51
4.2.1 DCT - High level synthesis optimizations..............c.coovvviiiieemeeeeeeeeeeeeeeeeiins 51

4.3 USE CaSE Bttt e et et b 54

oSS YU 101 0 0= PP 25
I = (=1 (=] o =SSP 56

Page3

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

1 Scope of the Document

This deliverable presents the resuitom Task T3.2- Embedded software optimization
(Participants: PoliMi, IMEC- Start: M7 - End: M24) and Task T3.8 Custom hardware
optimization (Participants: CV, OFFIS, PoliT&tart: M7- End: M24) up tdM27.

The deliverable is the second and la®scribing the optimization actties for embedded
software andfor the hardware and describes to the application of these optimization

techniquesnthe MPLEX fl ow O6in i sol at i iotaeréctionviihé h o ut
latter is the subject of a differestet of del i verabl es (D3.4, 01l nt
Design Spae Expl orati on D3. 4. 3, AFi nal Report
hardware optimizations, aid méd3 Managdrme mtad |

software techniques).

The document closely follows the structure of its predecessor (D32et}iors 2 and 3 of
describethe methodologies and th&oolchains for the embedded software and custom
hardware optimization (both High Level Synthesis and Memory hieraophiynizations.
Finally, Section4 shows how the three selected use cases are covered by the optimization
toolchains.

Page4

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

2 Embedded SW optimization

Embedded software optimizatidtras been studied several different ways. Some approaches
arestrictly related to the detailed software estimation and optimization methodologies, other
involve also additional portions of the flomamelythe design space exploration engine
MOST. This section describes tlagvancements in the implementation of héerent
optimization flows

1.Compiler optimization exploratiorintegrates the SWAT detailed software estimation
toolchain with the MOST design exploration engine to find out the best combination
of optimization options offered by the LLVM code transforioattool.

2.Sourceto-source transformatiornlhis flow is canpletely based on the SWAT tabhkin
and has the goal of providing "optimization hints" to the developer, suggesting high
level, potentially beneficial transformations. This toolchain cannot bgrated with
the MOST exploration engine since the suggested transformations are not applied
automatically but rather require manual codiigio different approaches have been

followed.
a. Qualitative. T h e first IS a qgualitative onl
providing indications on the section of code to optimize and on how to
optimize it.

b. Quantitative.The second is an evolution of this first approach, as it estimated
the potential energy reductioassociated to a certain transformation. Bein
guantitative, this approach requires significant effort to analyze the effect of
transformations and to model them in quantitative way.

3.Parametric optimizationsThis flow integrates the SWAT estimatitoolchain with the
MOST exploration engine and operates on source files implementing functions that
depend on compitéme parameters. Typical examples are compiler pragmas (memory
alignment, loop properties, unrolling directives, linker options, etc.)agpdication
specific parameters.

4.Application configurationThis flow integrate the SWAT estimation tool chain with the
MOST exploration engine and provides an automated mechanism for the selection of
specific fifunction implementatiols a n d Aprroateisrs@.r Timmipas 0
approaches cover different application aspects.

a. Target independenfThis flow assumes that more than one implementation
(referred to asflinction mode") is provided for one or more given functions.
Implementation differ w.r.t. funatnal and noffunctional properties. Different
implementation are expected to be executed on the target platform always
operating in the voltage and frequency conditions.

b. Target dependentelected functions are automatically annotated to force the
target © enter specific voltage and frequency operating modes. The best
combination of modes is selected by means of design space exploration trying
to minimize the overall application energy under timing constraints.

Details of each flow are provided in the tlling.

Page5

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

2.1 Compiler optimizations exploration

This section provides a summary of the proposed optimization approach and reports the
improvements that have been implemented.

2.1.1 Optimization space modelling

The available set of LLVM transformations/optimizatiomedeled bythe binary vector:
T :[to t 3 tN] 1)

whose element; indicates whether theth transformation is active or not (for the list of
available transformations see Deliverable D3.2.1). This leads to a very large space to be
exdored. The clustering matrix:

€ho Tos 3 Ihn 9
e u
R = érl,O I’1,1 3 rl,N U
F;‘ 4 4 6 4 U
e 3 u
dko Tka 'kn(l ()

Has the goal of grouping transformations. An elemgnt1 indicates that the transformation
with indexj belongs to group, while a valuer, ; =0 means that the transformatipdoes not

belong to group. With clustering, a specific optimization choice is described by the set of
groups that are active, that is by a vector:

G:[go g 3 gK] 3)

having the same semantics as vedip but with groups instead of single transformations.
Given a certain choice of groups to be activateas selected by the exploration flawthe
transformations to enable are simply obtained as:

T :(G3 R)T (4)

The original ideaof the flow has been extended according to a-pWwase approach. The
second phase consists in the exploration over clusters of transformation, as described above
and in more detail in Deliverable D3.2.1. The first phase, on the other hand, operates within
each cluster. Given a cluster

O; :|.ri,0 r, 3 ri,NJ:{tj Ir; =1 (5)

the same flow is used to select the subset of transformation that lead to more efficient code.
Formally, this is equivalent to eliminate those transformations whose effect is neghgible
the specific code. If; is such a transformation, then we ggt=0. After reducing all groups

according to this procedure, clustevel optimization is performed.

The setup of the MOSIbased optimization flow is depicted kigure 1. Input of the flow
arethe source files, the set of compiler options and a nafdék target architecture.

Page6

COMPLEXPOLITO/R/D3.2.21.0 Public

Final report on embedded safire and memory optimization

Design Space:
optimizationslist

!

X.C

Optimization Op(ggl:(z)itslon < MOST
t = Estimated time
@ Back - End e =Estimated energy >
s = Estimated size
CPU - J \ J
model !
x.opt.c

Figurel: General MOSTbased optimization flow
The output can have different forms, namely:
1.A hostexecutable binary file
2.A targetexecutable binary file
3.A list of compilation options
4.A rewriting of the C source code.

It must be noted that, in the last case, the SWAT flow uses the LLVM experimental C
language backnd, which generates €dethat is hardly readable, as it is the effect of
translation of asembly code back to very simple C statements.

2.1.2 Optimizations clustering
This section summarizes the clusters that have been constructed to perform-gihaseo
transformation selection exploration

Control Flow

- abcd Remove redundant conditional branches
- break -crit - edges Break critical edges in CFG

- block - placement Profile Guided Basic Block Placement
-insert - edge - profiling Insert instrumentation for edge profiling
-insert - optimal - edge - profiling Insert optimal instrumentation for profiling
- jump - threading Thread control through conditional blocks
- mergereturn Unify function exit nodes

- lowerswitch Lower Switchinst's to branches

- sink Code Sinking

- simplifycfg Simplify the CFG

Functions

- always - inline Inliner for always_inlindunctions

- argpromotion Promote 'by reference' arguments to scalars
- codegenprepare Prepare a function for code generation

- deadargelim Dead Argument Elimination

Page7

COMPLEXPOLITO/R/D3.2.21.0

Public

Final report on embedded safire and memory optimization

- functionattrs

Deduce function attributes

- inline Function Integration/Inlining

- ipconstprop Interprocedural constant propagation

- ipsccp Interprocedural Sparse Conditional Constant Propagation
- mergefunc Merge Functions

- partial - inliner Partial Inliner

- partial - specialization Partial Specialization

- sretpromotion Promote srearguments

- tailcallelim Tail Call Elimination

- tailduplicate Tail Duplication

Constants

- constmerge Merge Duplicate Global Constants

- constprop Simple constant propagation

- ipconstprop Interprocedural constant propagation

- ipsccp InterproceduraBparse Conditional Constant Propagation
- scep Sparse Conditional Constant Propagation

Variables & Expressions

- argpromotion

Promote 'by reference' arguments to scalars

- globaldce Dead Global Elimination

- globalopt Global Variable Optimizer

-gvn Global Value Numbering

- mem2reg Promote Memory to Register

- reg2mem Demote all values to stack slots

- scalarrepl Scalar Replacement of Aggregates
- reassociate Reassociate expressions

- split - geps Split complex GEPs into simple GEPs
Basic Blocks

- adce Aggressive Dead Code Elimination
- dce Dead Code Elimination

- die Dead Instruction Elimination

- dse Dead Store Elimination

- instcombine Combine redundant instructions

- sink Code Sinking

Loops

- indvars Canonicalize Induction Variables

- Icssa Loop-Closed SSA Form Pass

- licm Loop Invariant Code Motion

- loop - deletion

Dead Loop Deletion Pass

- loop - extract

Extract loops into new functions

-loop - extract - single

Extract at most one loop into a new function

- loop -index - split

Index Split Loops

- loop - reduce

Loop Strength Reduction

- loop - rotate Rotate Loops

- loop - unroll Unroll loops

- loop - unswitch Unswitch loops

- loop - simplify Canonicalize natural loops

Lowering

- lowerallocs Lower allocations from instructions to calls

- loweratomic Lower atomic intrinsics

- lowerinvoke Lower invoke and unwind, for unwindless code generators
- lowersetjmp Lower Set Jump

Page8

COMPLEXPOLITO/R/D3.2.21.0

Final report on embedded safire and memory optimization

Public

- lowerswitch Lower Switchinst's to branches

- memcpyopt Optimize use of memcpy and friend

- prune - eh Remove unused exceptibandling info
- simplify - libcalls Simplify well-known library calls

- simplify - libcalls - halfpowr Simplify half_powr library calls

Finally, thetransformations in the following group aaévays active, since they mostly deal
with the manipulation of thenternal representation and do not really have an effect on the

quality of the code

Always active

- deadtypeelim

Dead Type Elimination

- internalize

Internalize Global Symbols

- strip

Strip all symbols from a module

- strip - dead - prototypes

Remove unuseflinction declarations

- strip - debug - declare

Strip all llvm.dbg.declare intrinsics

- SSi Static Single Information Construction
- ssi - everything Static Single Information Construction

2.1.3 Flow execution

Execution of the optimization flow is quite straightforward. In the following we suppose that
the transformations are clustered as described in the previous section.

Since the flow is integrated with MOST, which acts a main tool, two files are necessary:
1.A wrapper script to invoke the actual estimator.
2.An XML file describing the exploration space and the optimization goals.

The script, in particular, wraps the call to thaadC SWAT optimization tool based on the
LLVM optimizer opt and theswat - core - ba fl ow to evaluate execution time and
energy consumption of the code resulting from the application of selected transformations.

Here is an example of the script that has been developed to this purpose.

Page9

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

#_ MOST_GENERIC_WRAPPER__# INPUT_TEMPLATE_FILE INPUT_HLE

#_ MOST_GENERIC_WRAPPER__# METRIC_NAME OUTPUT_FILE TYPE ADDITIONAL INFO

MOST_GENERIC_WRAPPER__output_file__#

execution_cycles

log/reisc_sim.lo

regexp

Executed \ s*(\ S+)\ s*cycles

MOST_GENERIC_WRAPPER__output_file__#

instructions

log/reisc_sim.| og

regexp

cycles, \s*(\ S+)\ s*instructions

MOST_GENERIC_WRAPPER__ output_file__#

code_size

log/stat.log

template

Size:

#!/bin/sh

TARGET_FILE_DIR="/home/complex/UC1/apps/gsm/"

REISC_CONFIG_FILE="/home/complex/UC1/reisc/simple.cfg"

set -e

PagelO

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

touch phasel.txt phase2.txt phase3.txt excluded.txt

echo" -indvars -loop -unroll">> @ MOST _GENERIC_WRAPPER__ loop_unroll__ @.txt

echo" -inline">> @__MOST_GENERIC_WRAPPER__inline_ @.txt

echo" -licm -loop -unswitch" >>@_MOST _GENERIC_WRAPPER__licm__ @.txt

echo" -sccp">> @_ MOST_GENERIC_WRAPPER__sccp__ @.txt

echo" -mem2reg">> @__MOST_GENERIC_WRAPPER _mem2reg__ @.txt

echo " - preverify - domtree - verify - lowersetjmp" > opt.cfg

cat phasel.txt phase2.txt phase3.txt >> opt.cfg

echo" - preverify - domtree - verify" >>op t.cfg

rm phase*.txt

mkdir - p log bin opt opt/tmp

swat - opt - config opt.swatcfg - swat - debug > log/swat_opt.log 2>&1

reisc -gcc - 00 - mint32 opt/*.c - 0 bin/a.out > log/reisc_gcc.log 2>&1

reisc -run -a" -- config - file=$REISC_CONFIG_FILE" bin/a.out >
log/reisc_s im.log 2>&1

stat bin/a.out > log/stat.log

exit 0

As far as the exploration space description, it is constituted by an XML file listing the
available parameters to explore and the optimization goal.

Pagell

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

#<?xml version="1.0" encoding="UTF - 8"7?>

<design_space xml ns="http://www.multicube.eu/" version="1.3">

<simulator>
<simulator_executable path="/usr/bin/perl /home/ most /wrapper.pl
T - execution_config=/home/most/complex/UC1/run.sh.in -- timeout=1800" />

</simulator>

<parameters>

<parameter name="loop_unroll" type="string">

<item value="excluded"/>

<item value="phasel"/>

<item value="phase2"/>

<item value="phase3"/>

</parameter>

<parameter name="inline" type="string">

<item value="excluded"/>

<itemval ue="phasel"/>

<item value="phase2"/>

<item value="phase3"/>

</parameter>

</parameters>

<system_metrics>

<system_metric name="instructions" type="float" unit="inst"

desired="small" />

Pagel2

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

<system_metric name="execution_cyc les" type="float" unit="cycle"
desired="small" />

<system_metric name="code_size" type="float" unit="Byte"
desired="small" />

</system_metrics>

</design_space>

As mentioned before, the SWAT estimation flow can seatylégsreplaced by the target ISS

to perform a more accurate energy evaluation. This second option, though, suffers the
drawback that instruction set simulation proved to be more than 400 time slower than
estimation. This, considering that the exploratipace is rather large, strongly encourages
the use of the SWAT estimation toolchain. The optimization and estimation commands run by
the script are the following:

$>swat - core - cc 1 config opt.swatcfg T swat - debug
$>swat - core - ba 1 config ba.swatcfg T swat - debug

The toolswat - core - cc performs actual transformations using the LLVM optimizer. The
set of active transformation is passed to LLVM through specific configuration options in the
opt.swatcfg file. This is thus the input for the transformatiordastimation tools and the
output of the MOST engine during exploration. At each step of the exploration process, in
fact, MOST generates a new configuration file.

For the format of the configuration files and a description of the command line options See
Section 2.4

2.2 Source to source optimization flow

This section describes the implementation of the setorseurce optimization hint engine

based on the formal formulation provided in Deliverable D3.2ifdce the optimization hint
engineswat - opt does notperform any source code transformatiomwhich is left as a

manual task to be performed by the develdpert I's not possible to Ac
loop by exploiting the exploration tool MOST.

The second part of the sectidascribes the prototy@timplementation of the quantitative
transformation evaluation engisgvat - tge . This tool provides a quantitative estimation of
the potential energy saving that might be obtained by applying specificldvigh
transformations.

2.2.1 Optimization hint engine

After running the hint engine, the developer is provided with a set of suggestions on where
and how to transform the source code.

Pagel3

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

Figure 2 shows a simplified view of the, where some-precessing activities have been
omitted and indicat-Eddasbax whbtit esiwoulhd filkbe on
loop actually needs human intervention, as the suggested code transformationsapéatbt
automatically.

X.C i | xoptc

Manual
Code
Transformation

transformation
rules

Optimization _.Ott
Engi o ptimization :
HOE Hints ':

.............................. e mmm e
apply
suggested

@— Back - End transformations
CPU _ J
model i

t = Estimated time
e =Estimated energy
s = Estimated size

}

< Satisfied ? > o

yesl

x.opt.c

Figure2: General SWATbased sourc®-source optimization flow

2.2.2 Optimization hint rule definition

The grammar used to build the rules is rather general and is described inotvanépll

rulelist - rule rulelist
| rule
rule - ruleid 6 :cdndition
ruleid - constant
condition - termd [camdition
| term
term - elemé &térm
| term
elem - comp

Pageld

COMPLEXPOLITO/R/D3.2.21.0
Final report on embedded safire and memory optimization

Public

comp -

identifier -

Where constant is a terminal symbol indicating a numeric constaetpp stands for a
relational operator anadhetricid is a terminal symbol whose string value identifies a specific
metric, according to the following table, grouped according to the scope they refer to
(function, basieblock, or whole application). The second column indicates whether the metric

06 ~comp

6 %iuleid
6 (canditiond) 6

identifier relop constant

6 $nietricid

0 tetricidé [canstantd | 6

is a scalaor a vector. In the latter case, specifies the meaning of the index.

Function metrics

Identifier Argument Description

fnsize Function size

fnbbsize Function BB size

fnsizeavg Average function size
fnbbsizeavg Average function BB size
fncalls Functions called

fncallswgh Weighted functions called
fncallpoints Function call points

fninsnstat Index of the instruction| Function instruction statistics
fnexec Function execution count
fntime Total function execution time
fntimeavg Averagefunction execution time
fndepth Average function depth
fncallpointf Function call points frequency
fnregpress Function register pressure
fnclassstat Index of the class Function instruction class statistics
fnmempress Function memory pressure
fnstackpress Function stack pressure

Basic block metrics

Identifier

Argument

Description

bbsize Basic block size

bbsizeavg Average basic block size
bbinsnstat Index of the instruction| Basic block instruction statistics
bbexec Basic blockexecution count
bbregpress Basic block register pressure

bbclassstat

Index of the class

Basic block instruction class statistics

Application metrics

Identifier

Argument

Description

aaclassstat

Index of the class

Instruction class statistics

aastackmax

Maximum stack size

Pagel5

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

aainsnstat Index of the instruction| SInstruction statistics

aabbexec Total basic block execution time
aaregpress Register pressure

aamempress Memory pressure
aastackpressave Average stack pressure

2.2.3 Flow execution of the optimization hint engine

It is worth noting thaswat - opt the should not be applied to all the source code, but rather
to selected portions, called fAscopeso (see
most critical part of the applicatio

The list of scopes can be obtained using the analysis flow constituted bgoseha and
swatanalyze. In particular, after performing the basic modeling and estimation tasks collected
in swatcoreba with:

$>swat - core - ba 1 config myconfig.swatcf T swat - debug
it is necessary to run swahalyze with the selection options activated, namely:

$>swat - analyze -bb-select 1 threshold <percent>
T cluster *.bbmodel

to select critical basiblocks (loops inclusive), and:
$>swat -analyze -fn-select 1ithr eshold <percent> *.bbmodel

to select critical functions. Furthermore, since the optimization engine needs to know which
groups of basic blocks constitute a loop, the following command should be executed for each
critical function

$>swat -analyze 1ibb-cfg 1loopsfl.bbmodel f2.bbmodel ...
Finally the optimization engine can be run with the command
$>swat -opt iconfig opt.swatcfg 1 swat - debug

For a detailed description of the command line interface and of the configuration options of
the tools, see Sectidh3.1 and Sections 4.4, 4.5 and 4.6 of Deliverable D2.2.2.

2.2.4 Transformation effectiveness quantitative estimator

This tool provides an estimate of the effectiveness of specificlbigh transformations. The

key concept behind this approach is the possibility to estimate how thebhadianodels of

the applications will be affected by specific transformation. Jihgplest and most accurate
approach would be to actually transform the source code, then perform estimations. This is
depicted byFigure3.

Pagel6

C

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

S—
Transformations

Source-to-source
Transformation

Original Optimized

Sources Sources

bb Model

Engine

bb Model

T

optr Enpt

Gain AT, AE

Figure3: Exact transformation effectiveness estimation approach

The tool, thus, does not perform exact and semantically consistent transformation of the code
(asasourcdao-s our ce transformation engine woul d
basic block models. This is pictorially representedrigyre4.

‘ Transformations \
Original

Sources

bb Model

SWAT
Transformation
Estimation Engine

Updated
bb Model

T

opt’ Eupt

Gain AT, AE

Figure4: SWAT Transformation effectiveness estimation approach

T

orig?

E

orig

This approach requires a significant analysis and modeling effort to characterize specific
transformations in terms of resulting bablock models. From a technical point of viefvis

not possible to express the transformation of the Hastk models strictly in mathematical
form. For this reason we have decided to account for the effect of each transformation by
means of a specific algorithm generating the new Hasick modkl. Each algorithm is the
compiled in a shared dynamic library loaded at runtime by the core tool.

2.2.5 Flow execution of the transformation effectiveness estimator

The tool implementing this idea is currently in a very preliminary phase of development, as it
was not originally foreseen in the project. We nevertheless decided to explore this idea mainly
to support the optimization hint engine, rather than replacing it completely.

The tool is run with the following command line:
$>swat -tge 1 config tge.swatcfg i tform <name> 1 swat - debug

The configuration file, at present, does not introduce any additional option. Transformations
are explicitly specified on the command line. The name of the transformation is used to select

Pagel7

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

the specific model transformation dyniartibrary to be loaded. A complete description of the
interface is not provided here, since the tool not yet stable enough.

2.3 Parametric exploration

This flow has the goal of finding the combination of the "parametdrdie applications that
maximizes a predefined optimization goal. The kind of parameters that can be explored here
are all supposed to be implementsd@acro definitions influencing:

1.The behavior of the compilefhesemacros(usually pragmasare used to modify the
behavior of the copiler in the optimization, code generation and linking phases.

2.The behavior of the applicatiom.hesemacrc directly influencethe behavior of the
application codge by specifying for example, tolerances, nber of iterations,
timeouts polling frequen@s and so an

We wi | | refer to the former case as At ar ge
dependent 0 exploration the | atter.

The optimization flow shown inFigure 5, combines the MOST exploration engine and the
SWAT estimation toolchaifor the actual instructieeet simulator of the target platform).

Design Space:
optimizationslist

!

X.C i macros.h ¢

MOST
t = Estimated time
@ Back - End » e =Estimated energy
s = Estimated size
CPU . J \ J
model !

macros.h

Figure5: General setup of the optimization flow forametric exploration.

The flow has been implemented and tested on small examples. Since the implementation of
the flow basically consists in building dxbc wrappers and XML parameters descriptions for
interfacing MOST and the SWAT estimation flow, addtional details needs to be provided

here The form of the XML file and of the wrapper script is similar to that discussed in
Section2.1.3

2.3.1 Targetindependent configuration

For this kind of optimization, we suppose that a given fundbof) of the application has
been implemented in different ways, which we refer to as functional modes. Each functional
mode is then subject to conditional compilation undergird of macrd-OO_MODE_<N>
where<N> is a suffix that unambiguously identifies one of the specific implementations. An

Pagel8

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

example of implementation template of a function with three diiteneodes is provided in
Figure®6.

#if defined (FOO_MODE_)

int foo(int x){

/[Implementation 1

#elif defined (FOO_MODE_2

int foo(int x){

/I Implementation 2

#elif defined (FOO_MODE_3

int foo(int x){

/[Implementation 3

#else

#error Mode not defined.

#endif

Figure6: Template implementation of a function with three functional modes.

Pagel9

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

Typical exampl es of di fferent Afunctinonal m
accuracies of a computation, a floatipgint versus a fixeghoint implementation of an

algorithm and different tradeffs between local processing and transmission frequency for
sensing functions on a wireless sensor network node.

2.3.2 Target dependent conf iguration

This second option of parametric exploration has the goal of determining the best combination
of the voltage and frequency operating modes of the target processor. Compared to traditional
approaches, where entire threads, processes or procebgsbare assigned an operating
mode, the exploration proposed here operates at a muclyfaieed level.

Considering a generic application as structured as a set of C functions, we first identify the
most critical ones, using the same analysis stepsedtifor the optimization hints flow.
These functions needs then modified manually, but in a very trivial way: it is in fact sufficient
to add two macros, one at the beginning and one at the end of the function. Note that if the
function has more than omgit point, the exit macro must be added before each of them.

Figure7 shows a template of a function instrumented with the macros necessary to enable this
form of parametric exploration and automatic application of the configuration selected by the
explorationengine.

int foo(int Xx)

[* Declarations */

VFMODE_ENTER_FOO

[* Original function body */

[* At each exit point */

VFMODE_EXIT_FOO

return some_var;

Figure7: Modification of a function to supporatget dependent modes exploration

In the specific case of the RelSC processor, the core provides three operating modes, namely
normal, snooze and sleep. The exploration engine, supported by the SWAT analysis tools
swatcoretr and swaianalyze, will seletcper each function the best suited operating mode of

the target processor. This is done by minimizing the estimated energy consumption under

Page20

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

execution time constraints, either in the form of deadlines for each function or in the form of
an overall timingconstraint.

Again, the structure of the flow is based on the MOST exploration engine and does not
significantly differ from the arrangements discussed so far. The only difference lays in the
core tools of the SWAT framework that are used to perform asaysl estimation.

In particular, the following steps are necessary. First of all, the code of the functions needs to
be modified as described Figure 7 Then, a static estimation pass must be performed to
derive the execution time and the energy consiompif each basic block of the application.

This is done by means of the sweatreba flow. Executing the application with different
processor modes assigned to different functions implies suitably updating thélbekic
models with different costs based the specific mode the function is assigned.

Since the operating mode of the processor changes over time, depending on the function being
executed and its associated mode, a full trace of the-blagik executed must be generated.

This is done usinghe swatcoretr tool with a specific configuration that includes tracing of
function entry and exit points. This information will be used during analysis to determine
where, in the execution trace, the operating mode is changed. The command to do this is:

$>swat -core -tr T config trbbce.swatcfg T swat - debug

Where the configuration file specifies the required instrumentation rules and support library,
namely:

[trace - bbce]

rules = bbce.rules

libray = libswat - tracing.a
binary = executable

execute = true

mode = file

The SWAT tracing core flow will dump the execution trace on a file with extension .t804 (see
Deliverable D2.2.2 for a description of the format of the trace file) listing all the executed
basic blocks and the function entry and exit points. This frag&ses (static estimation and
tracing) need to be performed only once, before entering the exploration loop managed by
MOST.

The dynamic, moddependent, estimation is then performed using-tywathe SWAT trace
postprocessor. This tool, for the specific trace analysis, requires as input a file specifying one
Afall ocationo of functions to processor modes
functions and related operating modesr & description of the way operating modes can be
assigned to functions, see Section 4.3.9 of Deliverable D2.2.2. This file is the input for the
trace analysis and is the output of MOST. At each step the file describes a different allocation

of functionsto modes.

Furthermore the tool needs a specific entry in the configuration file indicating the energy and
timing characterization of the processor modes. This is specified as:

[taget]
cpu - modes = resic.modes

Page21

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

At this point the analysis tool can be run:

$>swat -trp T config alloc.swatcfg i fn - allocation
i allocation - file <prj>.alloc
T trace <prj>.t804 T swat - debug

The output generated are the estimated execution time and energy consumption of the
application configured as desceib in the allocation file. These figures are used by MOST to
select different allocations until the best one is found.

2.4 Tools

2.4.1 swat-core-cc
This toolimplements core of the-@-C optimization engine based on the LLVM optimizer
Synopsys
swat - core - cc <options>
Options

- help
Prints a short description of the tool options.

- version
Prints the tool version.

- swat - debug
Produces a verbose debugging output of the execution.

- config
Specifies the configuration filename

- output
Specifies theutput filenamelisting the rules that have triggered.

Configuration file specific options

The configuratiorfile format follows the standard defined for all configuration files used by
the SWAT toolchairas described in Section 4.5.1 of Deliverable D2.2.2. For the specific tool
options the configuration file introduces the additional sedtiptimization] described
below, and uses the information in the configuration optibma - ccflags , llvm -
optflags andllvm - optfile found in the standarf@dompilers] section.

The new section simply allows specifying the output directory where to save the optimized
version of the application. This new version is the input for the estimation flow.

Output -dir =< path >
Theoutput directory.

Page22

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

2.4.2 swat-opt
This toolimplements rulébase optimization hint engine
Synopsys
swat - opt <options>
Options
- help
Prints a short description of the tool options.

- version
Prints the tool version.

- swat - debug
Produces a verbose debugging outidithe execution.

- config
Specifies the configuration filename

- output
Specifies theutput filename, listing the rules that have triggered.

Configuration file specific options

The configuratiorfile format follows the standard defined for all configuration files used by
the SWAT toolchain as described in Section 4.5.1 of Deliverable D2.2.2. For the specific tool
options the configuration file uses the additional sedsoropt] described below

r ules = <string>
The rule file. The file has theopt rules suffix and collects the rules, one per line,
structured according to the grammar exposed above.

fn - selection =< fnid > [<fnid>...]
Selected functions to apply the rules on. The argument is a fishctfon identifiers,
as generated bgwat - uniqid

bb- selection = < bbid > [<bbid>...]
Selected basiblocks to apply the rules on. The argument is a list of Hasitk
identifiers, as generated Bwat - uniqgid

Ip - selection = (<bbid > [<bbid>..]) [(<bbid>[< bbid>...])]

Selected loops to apply the rules on. The argument is a list of loops enclose in parentheses,
each loop being in turn a list of baditock identifiers, as generated bwat - unigid . The

list of loops can be obtained usisgat - analyze with the optiong bb- cfg i loops , as
describe in Section 4.3.1 of Deliverable D2.2.2.

Page23

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

2.4.3 swat-tge
This tool implements the quantitative transformation effectiveness estimator.
Synopsys
swat - tge <options>
Options

- help
Prints a short description of the tool options.

- version
Prints the tool version.

- swat - debug
Produces a verbose debugging output of the execution.

- config
Specifies the configuration filename

- tform <name>

Specifies théransformation to be analysethe algorithmic transformation model is
implemented in the librarige_<name>.so

Page24

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

3 Custom hardware optimization

3.1 High level synthesis optimizations

Modeling the dominant effects of Register Transfer (RVEel components under power
gating to get fast angccurate estimates in order to explore the design space of the HLS is one
of the main contributions in this workigure8 gives a simplified overviewn the modeling,
estimation, and optimization flow that will be further described in this sect@drfurther
description of the overall flow can be found in Deliverable D.3.2.1.

Its main purpose is to get accurate estimates for four main variablesgdealdrrents in the

static on and off state, energy overheads due to the state transition and thevbreaine.

These values are obtained for each individual RTL component within the design and are then
used beside the precise parameter values andtagiatterns to get an estimatidar its

overall energy consumption.

Algorithmic Level
for optimisation S ’
Write power-aware

High-Level Synthesis design information

L S o Synthesize power-
management controller
Register Transfer Level
[’
d h_.

Logic Synthesis Simulation

'ﬂl

Gate Level

9 p S, 2

Use models
for estimation

Modelling
through
abstraction

Layout
Synthesis
g o S 2

Transistor Electrical

Abstraction

Level Level

Figure8: Visualisation of proposed powgating modelling, estimation and optimisation flow

The experimental assessment of tleveloped power gatingnodel acuracy needs a fixed

and welldefined environment. For this reason, at first a technology selection is done for
which the evaluation islone and all model parameters are constrained to a set of discrete
values or a continuous range. Tlodlowing evaluatio then distinguishes beeen the pure
model evaluation and presentation of the poweranagemerddoption at system level.

3.1.1 Technology Selection and Parameter Ranges

To validate the correctness of the modeling approaches and to prove its universality, a
selection of technologieand parameters has been made. Beside different technology node
sizes, it is important to covelifferent process corners. Additionally, MTCMOS technologies
should be considered in order to coskrep transistor implementationskoth standardand
high-threshold design.

Page25

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

Technology name Size Process corners Threshold voltage
slow-slow | typical-typical | fast-fast | Standard VT | High VT
Nangate 45nm [Inc] | 45nm X X X X X
Industrial 45nm 45nm 0 X 0 X X
Industrial 65nm 65nm 0 X 0 X X

Figure9: Semiconductor technology selection

Figure 9 lists three different technologies for which the characterization was done. The
Nangate free 45nm open source digital cell library technology is a general purpose (GP)
technology based on mhetive technology modelcards of the NIMO Group, Arizona State
University. It is freely available and is widely used in the scientific context. It offers three
even process corners (slalow, typicaitypical, and fasfast) that are all evaluated
separatly. Even means that both PMOS and NMOS devices are equally affected by
variations of fabrication parameters. Further, it is a MTCMOS technology and thus it includes
both, standardand highVTH transistors. The industrial technologies are also MTCMOS
techrologies but their process corner is restricted to the typical case in this evaluation.
Additionally, and in contrast to the Nangate library technology, they are both LP specialized
technologies. These LP techniques inherently have lower leakage currerite aresulting
power gating breakven time is in another order of magnitude.

Parameter Symbol | Ranges

supply voltage Vb [0.9V:1.3V]

temperature T [27°C, 127°C]

gate voltage offset Ven [0.0V;0.1V]

sleep transistor width Wer [0%; 10%] of gated component size Wt

RT-level components RT add_fast, add_small, dec_fast, dec_small, inc_fast,
inc_small, sub_fast, sub_small, mult_fast, mult_small
bitwidth bw 4.8.12.16.20.24, 28, 32

FigurelQ: Parameter ranges

Furthermore, a set of different power gating implementation types (referred to as power
gating scheme (PGS)) has besglected. It covers PMO&s well as NMOSased sleep
devices, doubleutoff as well as supeautoff techniques.

Figure 10 lists all parameters of theharacterization process and its parameter ranges. The
supply voltage is constrained by the technology whereas the surrounding temperature is
constrained by reasonable values. The gate voltage of the sleep devices that is used in
SCCMOS techniques to emte a cutoff is specified as an offset to the supply or ground
voltage. It is in the range 0V to.X)/ and thus the sleep signal is in the range of [VDD;
VDD+0.1V] for PMOSbased PGSs and [GND;GNI1V] for NMOSbased PGSs. The

sleep transistor width is cetrained to a maximum of 10% of the gated component size. The
characterization is also constrained to functional RTL units that are available and supported

by OFFI S6s Power Opt . Their bitwidths ranges

Page26

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

3.1.2 Evaluation of Power G ating Models

During model generation, a lot of methods have been used to compact and ease the resulting
models. Thisincludes compressions of lookup tables, exhaustive interpolations in multiple
dimensions, parameter separatigmyn)}linear regression téaiques, and simplifications to

speed up the model generation. For te&son, the evaluation has to show the quality and the
performance improvements compared to referastenates. Since silicon measurements are

not available, the reference estimates abtained by Spiebasedanalog circuit simulation
measurements. This is an established approach in the scientific as wellsisal area.

The entire characterization is done via Synopsys HSPICE versid®08.03SP1 and is
executed ora general pumse Intel Core2Duo machine at 3Ghz. It lasts about one day per
semiconductor technologwhereas transient simulations of th&te transition energy and
wakeup models make up 98% of the time. Of this, ntbam 50% is attributable t@rge
multiplier compaments. This illustrates the limits of circuit simulatioasd underlines the
hardness of predicting the application of power gating for huge components.

For presenting the absolute and relative accuracy of the models, a@kntweevaluation has
beenapplied covering all parameters in the aforementioned ranges and three error measures
have been computethe maximum relative error for oveand underestimatiofXRE), the

mean absoluteelative error(MARE), andthe relative standard deviatiom the bllowing,

the evaluation results of the models are presented.

3.1.2.1 Evaluation of Sleep Transistor Leakage Models

In the remaining leakage curremtodel the supply voltage range is sampled with a rate of
0.1V, the temperature with 2Q, and the gate voltage withrate of ALV, resulting in a total

of 5*6*2 = 60 sampling points for eaclPGS and technology. Furthermore, the
characterization has been done for an isolated PGS circuitryanstrannel width of Im.
Figure 11 shows the model errorés it can be seen, the remaining gaiad subthreshold
leakage currents can be predicted witresarage MARE below 1% and a maximum error of
6.5%. On top of this erroithe model simplificatiorof assuming the voltage drop across the
sleep transistor to be equivalent to the supply volgiienduce an additional error in terms
of an overestimation of up to 15%.

Page27

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

Nangate 45nm Corner Case Typical Industrial 45nm Corner Case Typical
7.00% 7.00%
5.00% 6.00% 2
5.00% 5.00%
4.00% 4.00%
3.00% I 3.00%

2.00% 2.00%

1.00%
0.00%

1.00%

0.00%

PMOS NMOS|PMOS NMOS| PMOS NMOS| PMOS NMOS

SCCMOS SCCMOS SCCMOS SCCMOS

Nangate 45nm Corner Case Fast Industrial 65nm Corner Case Typical
7.00% 7.00%
6.00% £.00%
5.00% 5.00% |
4.00% 4.00%
3.00% I 3.00%

2.00%
1.00%
0.00%

2.00%
1.00%

0.00%
PMOS NMOS|PMOS NMOS| PMOS NMOS| PMOS NMOS

SCCMO3 5CCMOS SCCMOS SCCMOS

Nangate 45nm Corner Case Slow
7.00%
6.00%
5.00%

XRE up

XRE down
MARE

B rel. std. dev.

4.00%

3.00%
2.00%
1.00%
0.00%

SCCMO5 SCCMOS

Figurell: Errors of the gateand subthresholigakage model for locking sleep transistors

Conducting sleep transistors are again modeled at a supply voltage sampling ra, of O
whereaghe gate voltage disappears as a parameter. Since pulealatge currents do only
slightly depend on the temperature, a wider sampling step°@f 8&n be used for this model,
leading to a total o6*3 = 15 sampling points. Nevertheless, the temperature remains a
parameter during modeling as it mggin importance in future semiconductor tecloges
because of increasing function leakage currenteeing more dependent on the temperature.
Figure 12 presents the model evaluation resufsthe gateleakage model for conducting
sleep devicesThe MARE is about 4% for the Nangate f#&nm open source digital cell
library and 1% for the two industrial technologies. In all cases, the medels to
overestimate the gateakage currents becausttbe quadratic impact of VGS and VGD
while the model linearly interpolates between two adjacent sampling points. Increasing the
supply voltage sampling rate would reduce this overestimation but also enlarge the model.
Additionally, the maximum error is dyn 18% for the Nangate and even below 4% for the
industrial technologies.

Page28

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

Nangate 45nm Corner Case Typical Industrial 45nm Corner Case Typical
20.00% 5.00%
16.00% 2.00%
12.00% 3.00% I
£.00% | 2.00% I
4.00% ——~I» — — 1.00% —l -— 8 % —
o LN R D AN U D e (Lo O L OO 0 U Ly
PMOS NMOS|PMOS NMOS PMOS NMOS|PMOS NMOS, PMOS NMOS PMOS NMOS|PMOS NMOS|PMOS NMOS
SCCMOS SCCMOS ‘ SCCMOS SCCMOS
SVT HVT SVT HVT
Nangate 45nm Corner Case Fast Industrial 65nm Corner Case Typical
20.00% 5.00%
16.00% 4.00%
12.00% 3.00%
8.00% [| 2.00% |
4.00% -—~|: - - 1.00% -_T_l_l
ooe LILN LM LN INININER .. [Lild |
PMOS NMOS|PMOS NMOS eMos Nmos|pmos nvos PMOS NMOS| PMOS NMOS|PMOS NMOS|PMOS NMOS
‘ SCCMDS SCCMOS SCEMos SCeMOs
VT HT ‘ T AT

Nangate 45nm Corner Case Slow
20.00%

16.00%

B XREup
1200 B XRE down
8.00% I B MARE
2,00% ——rl—_____r___ - B rel. std. dew.
0.00% I I I I I
PMOS NMOS| PMOS NMOS | PMOS NMOS|PMOS NMOS
SCCMOS SCCMOS
SVT HVT

Figurel2 Errors of the gatéeakage model for conducting sleep devices

3.1.2.2 Evaluation of Voltage Drop Models

Figure 13 presents the maximum, mean, and standard deviation errors wblthge drop

model for the conducting stat&éhe parameters temperature and supply voltage are sampled
with a step width oR0°C and Q05V. As presentedh the charts, the occurring voltage drop

can be predicted with an average error eb% with maximum overestimates of 25%.
Secondly, the errors of HV¥Tand doublegating schemes are larger thidwose of SVT and
singlegating schemes because these schemes have higher on resistances andtherease
voltage drop dynamic that needs to be interpolated by the model. Underestimates that would
play down the presence of sleep devices are limited to 5% maximum.

The voltage drop moddor the locking statés evaluated as presentedHRigure 14. For the
parameterssupply voltage temperaturg gatevoltage and sleep transistor sizéhe model
consists of a®*3*6 = 180point measuring field. With a mean absolute relative error below
1.5% and a relative standard deviation 01% in maximum across all technologies, the
accuracy of themodel is very high. However, this accuracy is alemessary because the
estimates serve as input to 8tate transition energyodel ad highly impact its predictian

Page29

COMPLEXPOLITO/R/D3.2.21.0
Final report on embedded safare and memory optimization

Public

16.00%
14.00%
12.00%
10.00%
B8.00%
6.00%
4.00%
2.00%
0.00%

10.00%

B.00%

6.00%

4.00%

2.00%

0.00%

28.00%
24.00%
20.00%
16.00%
12.00%
B.00%
4.00%
0.00%

Nangate 45nm Corner Case Typical

12.00%

10.00%

8.00%

6.00%

4.00%

2.00%

0.00%

SCCMOS SCCMOS

Nangate 45nm Corner Case Fast

20.,00%

16.00%

12.00%

8.00%

4.00%

0.00%

SCCMOS SCCMOS

Nangate 45nm Corner Case Slow

SCCMOS 5CCMOS

Industrial 45nm Corner Case Typical

Industrial 65nm Corner Case Typical

XRE up

XRE down
MARE

rel. std. dev.

Figure13: Errors of the voltage drop model for conducting sleep devices

Page30

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

Mangate 45nm Corner Case Typical
2.00%

6.00%

WXRE up

4.00% M XRE down

MARE
2.00%

Mrel. std. dewv.

0.00%
add_fast add_small dec_fast dec_small inc_fast inc_small sub_fast sub_small mult_fast mult_small

MNangate 45nm Corner Case Slow
1.00%

0.80%
M XRE up
0.60%

WXRE down

0.40% MARE
020% Mirel. std. dev.
0.00%

add_fast add_small dec fast dec_small inc_fast inc_small sub_fast sub_small mult_fast mult_small

Nangate 45nm Corner Case Fast

7.00%
6.00%
5.00% M XRE up
+.00% W XRE down
3.00%
2.00% MARE
1.00% Wrel. std. dav.
0.00%

add_fast add_small dec fast dec_small inc_fast inc_small sub_fast sub_small mult_fast mult_small

Industrial 45nm Corner Case Typical

7.00%
6.00%
5.00% M XRE up
+.00% XRE down
3.00%
2.00% MARE
1.00% Mrel. std. dev.
0.00%

add_fast add_small dec_fast dec_small inc_fast inc_small sub_fast sub_small mult_fast mult_small

Industrial 65nm Corner Case Typical

350%
3.00%
250% M XRE up
2.00% M XRE down
150%
1.00% MARE
0.50% Mrel. std. dev.

0.00%
add_fast add_small dec_fast dec_small inc_fast inc_small sub_fast sub_small mult_fast mult_small

Figurel4: Errors of the voltage drop model for locking sleep devices

3.1.2.3 Evaluation of State Transition Energy Models

The most effort for model evaluation has been spent fostidwe transition energyodel
because some large multiplieomponents are nagimulatable in high bitwidths or in
combination with some PGSs. In these cassjopsys HSPICE fails in simulating the
circuits due to a high memory demand and failing convergemedyses. To provide a
meaningful analysis of the model, a Mo@arlo basd evaluation performs a totaf 1000
randomly chosen transient simulation runs, lasting about two weeks of computation time. The
presented errors base on about 93% of the simulation runs that have been finished
successfully and includall model errors iduced by the model representation and required
interpolation. Especially, the bitwidicalingand PGS selection is reflected in the evaluation
Peakerrors have been observatl peak voltage drop errors because of their super linear
dependency.

Page31

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

Figure 15 summarizes the evaluation results per technology and-d®mponent. Mean
absolute relativeerrors below 10% and mostly even below 5% havenl@®lyzed for the
dominant part of componentilevertheless, the quality varies. For example the incrementer
componeninc_fast in the Nangate technologyconspicuous with its higher peak errors and
standard deviations. Secondly, the model tendmtirestimate the state transition energy for
the two multiplier components in different technologies. Boiggests the conjecture thiaé
matrix structure cause super linearly increasing wake energies. Nonetheless, the
maximum errors are reasonablelov 25% and no further modeling effort has been spent for
these components.

As the temperature is set to the upper bound during characterization, the models do only
predict uppebound estimates. The interpolation table size of the modéRib5= 50 points
for the model parametessipply voltage, voltage drop, and sleep transistor size.

For the purpose of higlevel tradeoffs for which the models should be used, the accuracy is
perfectly adequate and the speed improvement is the dominant model featurgle@ogs
that a single analogircuit simulation may take up to several hours, thegharacterized
models can provide thousandsestimates per second.

Page32

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safare and memory optimization

Mangate 45nm Corner Case Typical

25.00%
20.00%
W XRE up
15.00%
W XRE down
10.00% m MARE
5.00% Wrel.std. dev.
0.00%
add_fast add_small dec_fast dec_small inc_fast inc_small sub fast sub_small mult_fast mult_small
Nangate 45nm Corner Case Slow
25.00%
20.00%
W XRE up
15.00%
W XRE down
10.00% = MARE
5.00% W rel. std. dev.
0.00%
add_fast add_small dec_fast dec_small inc_fast inc_small sub_fast sub_small mult_fast mult_small
Nangate 45nm Corner Case Fast
25.00%
20.00%
M XRE up
15.00%
W XRE down
10.00% o MARE
5.00% W rel. std. dev.
0.00%
add_fast add_small dec_fast dec_small inc_fast inc_small sub_fast sub_small muolt_fast mult_small
Industrial 45nm Corner Case Typical
20.00%
15.00% BYRE up
10.00% W XRE down
W MARE
5.00%
Mrel. std. dev.
0.00%
add_fast add_small dec_fast dec_small inc_fast inc_small sub_fast sub_small mult_fast mult_small
Industrial 65nm Corner Case Typical
25.00%
20.00%
W XRE up
15.00%
W XRE down
10.00% = MARE
5.00% W rel. std. dev.
0.00%

add_fast add_small dec_fast dec_small inc_fast inc_small sub_fast sub_small mult_fast mult_small

Figurel5: Error of state transition energy model

3.1.2.4 Evaluation of State Trans ition Delay Models

Figure 16 presents the wakep time model evaluation. As it can be seen, the mean average
errors aremainly below 10% but peak emovary a lot and range up to 26%. Especially the
wakeup delay predictiotior the smalitype components performs better compared to the fast
type components throughout éichnologiesThe interpolation table size of the model is as
small as in the ERBW model because it bases on the selnagacterization runs.

Page33

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

Nangate 45nm Corner Case Typical

35.00%
30.00%
25.00%
20.00%
15.00%
10.00%

5.00%

0.00%

W XRE up

M XRE down
W MARE
W rel. std. dev.

add_fast add_small dec_fast dec_small inc_fast inc_small sub_fast sub_small mult_fast mult_small

Nangate 45nm Corner Case Slow
30.00%
25.00%

20.00%
15.00% W XRE down

M ¥RE up

10.00% W MARE
W rel. std. dev.

add_fast add_small dec_fast dec_small inc_fast inc_small sub_fast sub_small mult_fast mult_small

Nangate 45nm Corner Case Fast

30.00%
25.00%
20.00%
15.00%
10.00%
5.00%
0.00%

W XRE up

M XRE down
W MARE

M rel. std. dev.

add_fast add_small dec_fast dec_small inc_fast inc_small sub_fast sub_small mult_fast mult_small

Industrial 45nm Corner Case Typical
30.00%
25.00%
20.00% mXRE up
15.00% M ¥RE down
10.00% ¥ MARE
5.00% mrel. std. dev.
0.00%

add_fast add_small dec_fast dec_small inc_fast inc_small sub_fast sub_small mult_fast mult_small

Industrial 65nm Corner Case Typical
25.00%

20.00%

M ¥RE up

M XRE down
W MARE
Mrel. std. dev.

15.00%

10.00%

5.00%

0.00%
add_fast add_small dec_fast dec_small inc_fast inc_small sub_fast sub_small mult_fast mult_small

Figurel16: Errors of statéransition delay model

3.1.2.5 Evaluation of Process Variation on Power Gating

The Nangate semiconductor technology offers circuit level device Imofiehree process
corners. Theseorners represent the extremes of parameter variations within which a circuit
must operate correctly. Thuthe corners cover the overall spectrum from slowest to fastest
possible devices. In this section, the impafcprocess variation on power gating is evaluated
exemplarily for a single RTL component.

Figure17 presents model estimates for power gating relevantyedeas that are normalized

to thetypical operating case. As it can be seen, the voltage drop across the sleep transistor as
well as the statéransition energies do only slightly change. This is completely different for

the leakage currents ariohing belavior. As expected, power gated components that are
fabricated at the fast process corner wardaster but on the other hand they cause a lot more

Page34

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

leakage currents. In relative terms, #utivecurrent of the fast process corner i imes as
high asof the typical corner but, while being powgaited, the remaining leakage currant
the sleep statis even 53 times as high. But in absolute terms, the amotirtduced leakage
is much higher for the fast corner. Together with the almost constantchtatgeenergy,
power gating becomes even more advantageous for designs fabdtatexr fast and less
advantageous for the slow process corner.

A breakeven time analysis for the Nangate 45nm technology at fast processresuits in
tbe times less #n half of the typicatase brealeven time.

140.00% l-T 161%]1\ 370% l:T\ 530%

120.00%

100.00%

a0.00% Eslow-slow
typical-typical

60.00% M fast-fast

40.00%

20.00%

0.00%

rall N rall HT =N F = 8T Lol AN
[I LR = IA('TJ’JH ‘lir f I IR F I.‘\'.I’..".T-_” ‘E‘.\'H' E.'\')*' E.H*' r? akeup D
1 J |
¥ ; ¥

active state power gated state state transition

Figurel7: Normalized model estimates for different process corners to analyze the paotassn
impact on power gating

3.1.3 Evaluation of IP -Level Application of Power Management

Every RTL component within a datapath contributes a small fraction to the active and sleep
currents of an overall design and has its individual wgkenergy and time. Further, at RT

level, each component has its own breakn time. At systertevel, all of these parameters
merge to one overall effectiviyetric of power gating and result in one global brea&n

time that has to be exceeded if all components are cut off simultaneously. This Section will
evaluate this systetevel view of power managemeint relative comparisons and absolute
numbers against the background of overall possible savings, impact of parameters, and
overhead costs of area and power.

Figure 18 lists design examples and characteristic parameters such as their functional unit
datapath composition after synthesis and cycle count within the schedule. To all of the
designs power gating has been applied with HVT NMOS sleep devicesarhamost
commonly in todafs practice. The fourth arfifth column in the tableshow absolutective

and sleep currennumbers of the designs at a fixed supply voltage of 1.0V, an ambient
temperature of 27°C, and on the base of the Nangate 45nm techmaldgpical process
corner. The sleep and active currerdse restricted to the functional units of the designs
because of the focus within thasalysis Nevertheless, the FUs make up the dominating part

Page35

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

of the total energy consumption. For example,hi@ EDCT benchmark, the FUs contribute
68% of the total energy consumption whereas the remaining 32% split up for multiplexer,
registers, controller, and clock tree. As the results stamtiye state leakage currerst
effectively reducedhroughout all bechmarks.

Design name Composition Schedule length | Iqcrjve of FUs | Ispppp of FUs
FDCT 4 x add_small@20bit,
3 x sub_small @20bit, 7 cycles 093.11A 2211 A
8 x mult_small@20bit
JPEG encoder | 1 x add_small@32bit
| X inc_small@32bit 69 cycles 289 A 0.7pA
1 x mult_small@32bit
AES cipher 4 x add_small @32bit 116 cycles 299 A 0.7pA
| x mult_small@32bit

Figurel8 Design examples and the effectivitiy of power gating in a global sleep state

In the following, a deeper analysis of the FDCT benchmark is examined in order to show the
impactof the continuous parametetesmperature and supply voltage as well as the discrete
parameters processrner and PGS selectioRor this analysis the Nangate 45teohnology

has been chosen in typicahd fast process corner. Furthermore, the HVT version has again
been selected foteep devices and theeep device sizes have been fixe@¥% of each RTL
component sizeHVT devices require a highsupply voltage. Thus, its range is constrained

to [1.1V;1.3V] whereas the temperature is examined adtesghole range of27°C;127°C].

Figure 19 then shows the gatirgwitch effectivity as a ratio ofleepactive currentand the
breakeven time of the overall FDCT design in nanoseconds.

At first, it can be seen that the effectivitymwer gating has only a small variance across the
parameteranges. It becomes only slightly less effective in suppressing leakage currents if the
temperature increases.

The supply voltage has also only a marginal impact on the effectivity. Additiotfahe is
only a smallvariation betweer2% and 4% among the differenpower gating schemesn
other words, leakage is reduced ¥%98% in all cases and, from the point of pure leakage
saving, the PGS selection is not particularly interestingllifsurrainding parameters are
identically.

Secondly, the break even time is presented. Unlike the gating effectivity;ethle even time
diminishes with increasinggmperature and supply voltage. This is because the-wakene

is much lower and less incomplégtansitions occur during the state transition. With a factor
of up to four, the variance is also muagher. Furthermore, the PGS selection highly impacts
the breakeven time. As it can be seen, PMG&emes have up to two times higher break
even times. @mparing the two process corngttse break even time alsoabout twice as big
for the typical process corner than that of the fast process corner.

Page36

Public

COMPLEXPOLITO/R/D3.2.21.0

Final report on embedded safare and memory optimization

(@ gy Doamessdws @y []aumeisdwsy (@ gy Dodamessdws ar gy [0]3imesadway
_ (8 : 8 g : B e : 8 g
L e T ﬂ\M\rf..r...r vy L e ﬂ\ﬂv\rf-.ru--r wo a
——— ———— — —
E%wm ——t 0 (A1 aax . Ena? [N agn —t wrz O
/ - / -~ y ! -~
1 -) _. %5T'T A _. %ST'T o
. e . p =
toos L %ore i _
[T ®LTT =
| — R O
o oot o) HBT'T o -) br 1
a2 hmm.._ aunieladws &y er hm_u.._ alnyesadwa ar g h_mu.._ aniesadway L hm_u._ alnieradway
T'T ...rllll_lll 49 I TT — L9 iy TT \Tllll_lll 9 ot TT — fd:] oy (=l
il y, - Lz I -, I Il / — Lz I — I)
A aa? ——— 0 aa e wer) aa? ——— 0 aos — i szt Q
&1 / _| o e1 £ _. wers - / _. o e / _. w5z’ m
-_ oo =
S : _ — —_— T) o
- . _. 0sT I - WOTT B . _. 00E w
. LT __H—W._ anmeladway _ T o .E_Uo_ w_ mesadway . £ nwu-_ aunjesadwal _ 2T g ._..m—u._ w.__._uﬂwn_:._wu
" :x_.uu-u_.u-u..--umw oz " Tt ||||_||||r|--rm_ ooz " :\r-ﬂu_---l---..m_w. o g " T |||..||||r|--r_m_| oz
A na___w.‘ .--r-.\n__. o aa A nn_“wﬁ -|-_-.Hm,_. o n_n.. --ru.,,u_. %000
€’ AT oz Uiy _| 05 L 1 %007 z
< ot | S | _ 3
- Fo -t oot — -+ %002 vl
- 1 g S ..._. 05T L so0e
a2 or [2.] 3umesadway & sor [2.] 3umesadway [E4 S [2.] aumesadway T4 . [2.]aumeiadway
1 B Tr 8 g Tt 8 g T LB yg
.m_lllll_lll it — \Tllll_lll i ——— Lir
Y, — £ — Y, —_ £7 -, Lz
[nlaan/ B Eca, [alaan/ B ES, —— . worT
g1 4 | g1 ¢ | 1 £ -
03 - oot W
- - _+ 002 m
" ._. 05T I

h o

“m.\m m_.._ﬁ_m_ \nmm_w_

[su] ™

“.w,m m:.._ﬁ:m_ \. nmm_w_

JauJ0d ssadoud }se)

Jaulod ssadsoud |eaidAy

Figure19: Comparison of power gating scheme efficiency and dynamic paraimizct

Page37

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

The wakeup time at systerevel is given by the maximum RTL component walgetime if

the supplygrid is assumed to be sufficiently dimensionEidiure 20 shows the wakep time

of the FDCTbenchmark in dependence on the temperature and supply voltage parameter for
the aforementioned gatinigpes and process corners.

twakelp[n51
PMOS NMOS double PMOS double NMOS
o — - -
L -
o 3~ — 15 < 8 7
9 e —— I S 1
S 2+ T 1-- 5_‘_‘_'#—‘__\# 2 1
<] p i 4
o 19 e 13 05 1 T ———— 13 21 —> 13 1 12
8 0¥ VDD [V] LI S S— VDD [V] o= VDD [V] L VDD [V]
= 27 S Tr——"1a 27 "1 27 TTr——~"11 27 47 N 11
< T w0 1;7 oS L 1;7 AT) 1;7 7 CE 07 1;7
= temperature [°C] temperature [°C] temperature [°C] temperature [°C]
1S 39 T 17 6 7 o 27
9 R
D) - 1 e —
© 2 ~ 4 - 15 —
g 05 ¢ 1 e
g T 13 TTTT——— 13 2 I 13 05 + T 13
- o rF— VDD [V] 0 F— - VDD [V] 0 +F— VDD [V] 0 F VDD V]
k4] 27 4 T —"1a 27 4 11 27 4 TT—"1a 27 g T
&£ T W gy 7 107 1y 7T w1 ST w7 1y
temperature [°C] temperature [°C] temperature [°C] ‘temperature [°C]

Figure20: Wakeup time evaluation of the FDCT design

It can be observed that the walkge time shows a very small variance in the parameter ranges.

It slightly decreases with increasing supply voltage and increases with a raising temperature.
Furthermore,at the fast process corner, it is about3296 smaller as it is at the typical
process corner. A comparison of the PMOS and NMOS gating schemes shows that NMOS
schemes are about three times faster in waking up.

Page38

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

3.2 Memory optimization

3.2.1 Introduction

The memay optimization toolaims at optimizinghe memory hierarchy of the system under
analysisusingtotal memory energyas a metrichowever the optimization strategpased on
subbankingbeing considered for SRA8s also beneficialo mitigateaging effect caused by
Negative Bias Temperature Instability (NBTIYhis section will first summarize the
assessment dghe energy benefitebtainedby the memoryoptimizationtool and eventually
present the detail®f techniques to concurrently achieveducel energy andextended
lifetime.

3.2.2 Energy Optimization of scratchpad memories

Many strategies for reducing dynamic energy of memories proposed in the literature rely on
the paradigm of splitting a memory arrd¥]([5], [6]). Section 3.2.1.3 0D3.2.1explained

how splitting the address space into multiple, independently accessed memdtpcdran
provide significant redution in energy consumptionMemory subbanking is beneficialor
energy in general because of the qumiform distribution of accesses to memory locations.
Even a naive partition of two identical shlocks guarantees a sizable reduction of average
energy.The search space of all possible memory partitions can $iy eenumerated by
observing that a partition is completely defined by a seddofress boundariege.g., a bi
partition can be characterized by the addressing around which the memory is split into two) .
Options for searching the space include -Bowvn lranchandbound searcf4] or a bottom

up one basedn dynamicprogramming[4]. This allowssolving the problemoptimally in
polynomial time in spite of an exponentiallized search space.

Section 3.1.3.1 of D3.4.presentd detailedenergyresults for the tool in the standalone
MEMOPT vesion Herein the following figures, we shotie percentage aénergy reduction

by splitting the memory in two partition$he first set consists of three sample applications
provided with the RelSC distribution, whereas the second set is a subset of the GHBEN
benchmarks, which are widely used in the embedded systems commih#pplications
were compiled using the RelSC toolchain and a fixed set of compiler optimizdtignse21
shows results for the RelSC sample applications Bigdire 22 show results for the
MIBENCH kernels.

Energy Reduction %

100

60

40 -

20

ext_GPIO ext_adc Rempeg-RAM

Figure21. Energy Reduction on RelSC sample applications.

Page39

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

Energy Reduction %

Figure22. Energy Reduction on MIBENCH sample applications.

Above figures clearlgxhibitthe benefit obtained by partitioning the memory into two blpcks
providing 80 to 85 %savingsin almost all casesCertainly these savings can be further
enhancedby increasing the number of partitions.

3.2.3 Concurrent Aging and Energy Optimization of scratchp ad memories

3.2.3.1 Overview

Traditionally, power and reliability have been considered as conflicting metrics, since most
design solutions for improving reliability (redundant circuits, strong signals, large devices)
are intrinsically power inefficientiowever, he recent emergence of reliability issues in the
form of aging (i.e., temporal drift of performance) of devices has opened a new perspective of
this dichotomy. Such a benefit can be especially exploited in SRAM memory structures,
which are particularly sesitive to NBTI effects: given their symmetric structure, they cannot

in fact take advantage of vakdependent recovery.

The most effective solutions rely on the observation that typical power management strategies
(i.e., voltage scaling for dynamic powand power/ground gating for static power) can be
exploited to reduce NBTihduced agindg10], [11]. Therefore, proper reisitation of power
managed memory/cache architectures according to an -esjatgd metric can achieve
concurrent energy and aging improvemdd®], [13], [14]. In this deliverable the memory
optimization strategy based on sbénking used to obtain energfficient SRAM
architectures, is also investigated to extend the lifetime of the memory and satrenaldd
techniques are presented to further improve the aging benefits.

3.2.3.2 Aging: Background and Preliminaries

Aging of devices has emerged as the latest challenge broygathnology scaling. Thinner
oxide layers, higher electritelds and operating terepatures, induce adverse physical and
chemical phenomena that cause transistors to deterioratpéifeirmance over time.

Page40

COMPLEXPOLITO/R/D3.2.21.0 Public
Final report on embedded safire and memory optimization

Deviation from the ideal behaviour of manufactured devices is the most critical dowhside
technology scaling beyond ti®nm node.The most evident type of nadeality isrelated to

the nondeterminism of devices due to process variat[@b$ They are mostly due to random
fluctuations of dopant atoms and to the systematic orsgetematic impreciseness of the
manufacturing process, a n-d e c add,ddviltionvfronethee d a s
nominal behaviour of each device.

There exists however another, and even more insidious, type efieality resulting from
technology scaling, namely, tistependent deviations in the operating characteristics of
devices[16]. Two are essentially the sources of tidependent variations: Bias Temperature
Instability (BTI), and Hot Carrier Interface (HCI). These physical/chahmedfects result in
the degradation of the oxide thesusing a drift of the threshold voltage over time.

Bias Temperature InstabilifBTIl) has emerged as the most critical weat mechanism for
MOS transistors below the 100nm node. It manifests itsel timedependent, permanent
increase of thehreshold voltag&/th of active transistors. Although BTI occurs in botfype

and ptype devices, at the current technology nodes, i.e., 65nm and 45nm, only pMOS
transistors are significantly affected, th#1@S transistor has a negligible level of holes in the
channel and thus, does not suffer from the BTI degradation

NBTI occurs when a pMOS is negativel ythebi asec
pMOS, resulting invgs =T VDD), and manifestsself as anncreaseof the thresholdoltage

with time, resulting in the reduction of drive current and noise margin, causihgnm
degradation of the delay of a device.

The actual amount of degradation depends on several parameters of a devias,isuldyic

function, threshold voltage, size, load, and temperdtliré From the design standpoint,
however, the most important property of NBi§lits dependence on the logic values. The
threshold voltage (and delay) degradation effects occur only when a pMOS device is in its
critical state (the stress states), that i s,
when a Isapgplied NBTLs@ess is actually removed, resulting in a partial recovery

(i.e., a decrease) of the threkhwoltage (the recovery state) as depictedrigyre23.

RECOVERY

A
STRESS | VDD

A —

Figure23. NBTI effect on pMOS

Page4dl

